Dong Yuehuan, Wei Qinguo, Sun Guolei, Gao Xiaodong, Lyu Tianshu, Wang Lidong, Zhou Shengyang, Wang Xibao, Shang Yongquan, Shi Lupeng, Zhang Honghai
College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
BMC Ecol Evol. 2025 Jan 10;25(1):8. doi: 10.1186/s12862-024-02345-9.
Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive. Our study endeavors to unravel the genetic components associated with the sense of balance in semi-aquatic mammals and to examine the evolutionary trajectories of these genes, shed light on the molecular mechanisms underlying the adaptive evolution of balance perception in semi-aquatic mammals.
We selected 42 mammal species across 20 orders, 38 families, and 42 genera for analysis. We analyzed a comprehensive set of 116 genes related to the vestibular system's development or function. Our findings indicate that 27 of these genes likely experienced adaptive evolution in semi-aquatic mammals. Particularly, genes such as SLC26A2, SOX10, MYCN, and OTX1 are implicated in collectively orchestrating morphological adaptations in the semicircular canals to suit semi-aquatic environments. Additionally, genes associated with otolith development, including SLC26A2, OC90, and OTOP1, likely regulate otolith sensitivity across various locomotor modes. Moreover, genes linked to vestibular disorders, such as GJB2, GJB6, and USH1C, may provide a molecular foundation for averting vertigo amidst intricate locomotor scenarios in semi-aquatic mammals.
Our research offers insights into the molecular mechanisms underlying the evolution of the sense of balance in semi-aquatic mammals, while also providing a new research direction for the adaptive evolution of mammals undergoing a secondary transition to an aquatic lifestyle.
半水生哺乳动物代表了陆生和水生哺乳动物进化谱系中的一个过渡阶段。平衡感对于哺乳动物的运动至关重要,与陆生同类相比,半水生哺乳动物这种感觉的结构基础(前庭系统)在水生和陆生环境中都表现出明显的形态适应性。尽管如此,驱动这些适应性的精确分子机制仍然难以捉摸。我们的研究致力于揭示与半水生哺乳动物平衡感相关的遗传成分,并研究这些基因的进化轨迹,以阐明半水生哺乳动物平衡感知适应性进化的分子机制。
我们选择了20目、38科、42属的42种哺乳动物进行分析。我们分析了一组与前庭系统发育或功能相关的116个基因。我们的研究结果表明,其中27个基因可能在半水生哺乳动物中经历了适应性进化。特别是,SLC26A2、SOX10、MYCN和OTX1等基因共同参与协调半规管的形态适应,以适应半水生环境。此外,与耳石发育相关的基因,包括SLC26A2、OC90和OTOP1,可能在各种运动模式下调节耳石的敏感性。此外,与前庭疾病相关的基因,如GJB2、GJB6和USH1C,可能为半水生哺乳动物在复杂运动场景中避免眩晕提供分子基础。
我们的研究深入了解了半水生哺乳动物平衡感进化的分子机制,同时也为经历二次向水生生活方式转变的哺乳动物的适应性进化提供了新的研究方向。