Suppr超能文献

用于精细多尺度熵的阈值“r”的最优选择

Optimal Selection of Threshold Value 'r' for Refined Multiscale Entropy.

作者信息

Marwaha Puneeta, Sunkaria Ramesh Kumar

机构信息

Department of Electronics and Communication Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.

出版信息

Cardiovasc Eng Technol. 2015 Dec;6(4):557-76. doi: 10.1007/s13239-015-0242-x. Epub 2015 Sep 2.

Abstract

Refined multiscale entropy (RMSE) technique was introduced to evaluate complexity of a time series over multiple scale factors 't'. Here threshold value 'r' is updated as 0.15 times SD of filtered scaled time series. The use of fixed threshold value 'r' in RMSE sometimes assigns very close resembling entropy values to certain time series at certain temporal scale factors and is unable to distinguish different time series optimally. The present study aims to evaluate RMSE technique by varying threshold value 'r' from 0.05 to 0.25 times SD of filtered scaled time series and finding optimal 'r' values for each scale factor at which different time series can be distinguished more effectively. The proposed RMSE was used to evaluate over HRV time series of normal sinus rhythm subjects, patients suffering from sudden cardiac death, congestive heart failure, healthy adult male, healthy adult female and mid-aged female groups as well as over synthetic simulated database for different datalengths 'N' of 3000, 3500 and 4000. The proposed RMSE results in improved discrimination among different time series. To enhance the computational capability, empirical mathematical equations have been formulated for optimal selection of threshold values 'r' as a function of SD of filtered scaled time series and datalength 'N' for each scale factor 't'.

摘要

引入了改进的多尺度熵(RMSE)技术来评估时间序列在多个尺度因子“t”上的复杂性。这里,阈值“r”更新为滤波后的尺度时间序列标准差的0.15倍。在RMSE中使用固定阈值“r”有时会在某些时间尺度因子下为某些时间序列赋予非常相似的熵值,并且无法最佳地区分不同的时间序列。本研究旨在通过将阈值“r”从滤波后的尺度时间序列标准差的0.05倍变化到0.25倍,并为每个尺度因子找到能更有效区分不同时间序列的最佳“r”值,来评估RMSE技术。所提出的RMSE用于评估正常窦性心律受试者、心源性猝死患者、充血性心力衰竭患者、健康成年男性、健康成年女性和中年女性组的心率变异性(HRV)时间序列,以及长度分别为3000、3500和4000的不同数据长度“N”的合成模拟数据库。所提出的RMSE在区分不同时间序列方面有改进。为提高计算能力,已制定经验数学方程,用于根据滤波后的尺度时间序列标准差和每个尺度因子“t”的数据长度“N”来优化选择阈值“r”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验