Baek Seung Bin, Moon Dohyun, Graf Robert, Cho Woo Jong, Park Sung Woo, Yoon Tae-Ung, Cho Seung Joo, Hwang In-Chul, Bae Youn-Sang, Spiess Hans W, Lee Hee Cheon, Kim Kwang S
Department of Chemistry and Center for Superfunctional Materials, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea;
Pohang Accelerator Laboratory, Pohang 790-834, Korea;
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14156-61. doi: 10.1073/pnas.1504586112. Epub 2015 Nov 2.
Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.
由于吸附的气体分子运动迅速,对其进行晶体学观察是一项极具挑战性的任务。在此,我们报告了在高温下不同压力下,对一种看似无孔的有机晶体中可逆二氧化碳吸附过程进行的原位单晶和同步辐射粉末X射线观察。主体材料由1,3,5-三(4-羧基苯基)苯(H3BTB)与N,N-二甲基甲酰胺(DMF)之间的氢键网络以及H3BTB部分之间的π-π堆积形成。该材料可被视为由笼子组成的有序阵列,这些笼子彼此紧密堆积,以至于从外部无法进入。因此,主体实际上是无孔的。尽管不存在连接空笼子的永久通道,但由于热活化分子门控,它们在高温下对二氧化碳具有渗透性,并且笼子中弱受限的二氧化碳分子允许在323 K下通过原位单晶X射线衍射进行直接检测。变温原位同步辐射粉末X射线衍射研究还表明,二氧化碳吸附是可逆的,并且由温度升高驱动。固态魔角旋转核磁共振确定了二氧化碳与有机骨架的相互作用以及二氧化碳在笼子中的动态运动。如核磁共振和模拟所示,可逆吸附归因于DMF分子的动态运动与二氧化碳的轴向运动/角度波动(一系列使二氧化碳分子能够通过的隔室的瞬态打开/关闭)相结合。这种温度驱动的瞬态分子门控可以将气态分子以有序阵列的形式存储起来,以实现独特的集体性质,并将它们释放以供随时使用。