Suppr超能文献

激发态质子转移控制单核钌(II)单水配合物中光异构化的不可逆性:一项密度泛函理论研究

Excited-State Proton Transfer Controls Irreversibility of Photoisomerization in Mononuclear Ruthenium(II) Monoaquo Complexes: A DFT Study.

作者信息

Ding Lina, Chung Lung Wa, Morokuma Keiji

机构信息

Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan.

School of Pharmaceutical Sciences, Zhengzhou University , 100 Kexue Avenue, Zhengzhou, Henan 450001, China.

出版信息

J Chem Theory Comput. 2014 Feb 11;10(2):668-75. doi: 10.1021/ct400982r.

Abstract

The detailed DFT investigation clears the working mechanism of the irreversible photoisomerization of trans-Ru(tpy)(pynp)(OH2) (TA) and cis-Ru(tpy)(pynp)(OH2) (CA) complexes. Both TA and CA complexes present two types of low lying triplet states, one resulting from a triplet metal-ligand charge-transfer (TMLCT) and the other from a triplet metal-centered d-d transition (TMC). The vertical excitation of the singlet ground state of the complexes leads to a singlet excited state, which undergoes ultrafast decay to the corresponding TMLCT. For TA, this TMLCT transforms with a low barrier to a TMC state. The dissociative nature of the TMC state leads to easy water removal to produce a five-coordinate intermediate that can isomerize via rotation of a pynp ligand and proceed towards the CA product. For CA, however, during this excitation and intersystem crossing process, an excited-state proton transfer (ESPT) occurs and the resultant TMLCT is very much stabilized with a very strong Ru(II)-OH bond; the high barrier from this TMLCT blocks conversion to a TMC state and thus prevents isomerization from the cis to the trans isomer. This high barrier also prevents the possibility of the isomerization process from TA to CA solely on the adiabatic triplet pathway. Instead, crossing points (XMC-CB, XMC-CA) near the minimum of the triplet metal-centered state of the cis isomer provide nonadiabatic decay channels to the ground-state S0--CA, which completes the photoisomerization pathway from TA to CA.

摘要

详细的密度泛函理论(DFT)研究揭示了反式-Ru(tpy)(pynp)(OH2)(TA)和顺式-Ru(tpy)(pynp)(OH2)(CA)配合物不可逆光异构化的作用机制。TA和CA配合物均呈现两种低能三重态,一种源于三重态金属-配体电荷转移(TMLCT),另一种源于三重态金属中心d-d跃迁(TMC)。配合物单重基态的垂直激发导致单重激发态,该单重激发态经历超快衰变至相应的TMLCT。对于TA,这种TMLCT以低势垒转变为TMC态。TMC态的解离性质导致易于去除水分子,从而产生一种五配位中间体,该中间体可通过pynp配体的旋转进行异构化,并生成CA产物。然而,对于CA,在这种激发和系间窜越过程中,发生了激发态质子转移(ESPT),并且生成的TMLCT因非常强的Ru(II)-OH键而得到极大稳定;这种TMLCT的高势垒阻止了向TMC态的转化,从而防止了从顺式到反式异构体的异构化。这种高势垒还排除了仅在绝热三重态途径上从TA到CA进行异构化过程的可能性。相反,顺式异构体三重态金属中心态最小值附近的交叉点(XMC-CB、XMC-CA)提供了到基态S0--CA的非绝热衰变通道,从而完成了从TA到CA的光异构化途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验