Nüske Feliks, Keller Bettina G, Pérez-Hernández Guillermo, Mey Antonia S J S, Noé Frank
Department for Mathematics and Computer Science, Freie Universität Berlin , 14195 Berlin, Germany.
J Chem Theory Comput. 2014 Apr 8;10(4):1739-52. doi: 10.1021/ct4009156. Epub 2014 Mar 6.
The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous to the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics.
分子动力学传播子(或转移算子)的本征值和本征向量包含有关分子热力学和动力学的基本信息。这包括稳态分布、亚稳态以及状态间的跃迁速率。在此,我们提出一种变分方法来计算这些主导本征值和本征向量。这种方法类似于量子力学中用于计算稳态的变分方法。我们制定了一种相应的线性变分方法。结果表明,线性变分方法所需的矩阵是相关矩阵,可以从给定基组的简单分子动力学模拟中估计得到。因此,这里提出的方法是首先定义一个能够捕捉相关构象转变的基组,然后计算各自的相关矩阵,接着计算它们的主导本征值和本征向量,从而获得慢动力学的关键要素。