Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States.
Chemistry Department, Building 555, Brookhaven National Laboratory , Upton, New York 11973, United States.
ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26145-57. doi: 10.1021/acsami.5b07964. Epub 2015 Nov 18.
Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel "family" of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd(1-x)Cu(x) alloys but also Pt-coated Pd(1-x)Cu(x) (i.e., Pt∼Pd(1-x)Cu(x); herein the ∼ indicates an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core-shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this "family" of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd(1-x)Cu(x) nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd9Cu representing the "optimal" composition. Moreover, our group of Pt∼Pd(1-x)Cu(x) nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. The variation of the MOR and EOR performance with the chemical composition of our ultrathin Pt∼Pd(1-x)Cu(x) nanowires was also discussed.
开发用于小分子氧化过程的新型电催化剂,包括甲酸氧化(FAOR)、甲醇氧化反应(MOR)和乙醇氧化反应(EOR),这些过程分别代表了其各自燃料电池配置中的关键阳极反应,是该领域近期努力的一个重要而相关的主题。在本报告中,我们共同努力,结合小尺寸、各向异性形态和可调节化学成分的优势,设计了一种新型的“功能架构家族”。特别是,我们不仅制造了超薄的 1-D Pd(1-x)Cu(x) 合金,还制造了 Pt 涂覆的 Pd(1-x)Cu(x)(即 Pt∼Pd(1-x)Cu(x);这里的∼表示内双金属核与 Pt 外壳之间的紧密结合,但不一定是实际的键合形成)核壳分层纳米结构,通过利用简便的基于表面活性剂的湿化学合成和 Cu 欠电位沉积技术,可轻松调节其化学组成。我们的主要发现是,我们制备的一系列纳米线具有功能灵活性。更准确地说,我们证明了这种结构 motif 的各种示例可以针对这三种重要的电催化反应进行定制,以获得出色的活性。特别是,我们注意到,与类似的 Pd 超薄纳米线相比,我们系列的 Pd(1-x)Cu(x)纳米线都表现出增强的 FAOR 活性,而与商业 Pt 和 Pd 标准相比,Pd9Cu 代表了“最佳”组成。此外,我们的 Pt∼Pd(1-x)Cu(x)纳米线系列在碱性介质中对于 MOR 和 EOR 反应,无论是与商业 Pt NPs 相比,还是与超薄 Pt 纳米线相比,其活性都高出几个数量级。我们还讨论了我们的超薄 Pt∼Pd(1-x)Cu(x)纳米线的化学组成对 MOR 和 EOR 性能的影响。