Suppr超能文献

使用包含纳米线的微器件进行微藻细胞转化的外源基因整合

Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

作者信息

Bae Sunwoong, Park Seunghye, Kim Jung, Choi Jong Seob, Kim Kyung Hoon, Kwon Donguk, Jin EonSeon, Park Inkyu, Kim Do Hyun, Seo Tae Seok

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

Department of Life Science, Research Institute for Natural Sciences, Hanyang University , Seoul 133-791, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27554-61. doi: 10.1021/acsami.5b09964. Epub 2015 Dec 2.

Abstract

Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.

摘要

具有高脂质产量和快速生长速率的优质绿藻细胞被视为下一代绿色能源的替代选择。为了实现基于生物质的能源生产,应通过基因工程开发具有卓越特性的转基因微藻。与正常细胞不同,微藻具有坚硬的细胞壁,因此将目标基因导入细胞具有挑战性。在本研究中,我们报道了一种用于高通量微藻转化的集成氧化锌纳米线的微器件。所提出的微器件不仅在微通道中配备了用于将基因导入细胞的氧化锌纳米线,还配备了一个气动聚二甲基硅氧烷(PDMS)微阀,以调节细胞与纳米线的附着和分离。作为模型,潮霉素B抗性基因盒(Hyg3)通过二硫键在水热生长的氧化锌纳米线上功能化,并通过还原裂解释放到绿藻莱茵衣藻细胞中。在Hyg3基因递送过程中,整体式PDMS膜向下弯曲,从而将藻类细胞向下推向氧化锌纳米线。气动管路中真空的供应使PDMS膜向上弯曲,使已导入基因的藻类细胞能够从微通道出口回收。我们通过聚合酶链反应(PCR)扩增插入基因并进行DNA测序,成功确认了微藻中整合的Hyg3基因。使用集成氧化锌纳米线的微器件将基因递送至藻类细胞的效率比传统的玻璃珠搅拌法和电穿孔法分别高6.52×10⁴倍和9.66×10⁴倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验