Suppr超能文献

蛋白质不稳定作为多种遗传性疾病的共同因素

Protein Destabilization as a Common Factor in Diverse Inherited Disorders.

作者信息

Redler Rachel L, Das Jhuma, Diaz Juan R, Dokholyan Nikolay V

机构信息

Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

出版信息

J Mol Evol. 2016 Jan;82(1):11-6. doi: 10.1007/s00239-015-9717-5. Epub 2015 Nov 19.

Abstract

Protein destabilization by amino acid substitutions is proposed to play a prominent role in widespread inherited human disorders, not just those known to involve protein misfolding and aggregation. To test this hypothesis, we computationally evaluate the effects on protein stability of all possible amino acid substitutions in 20 disease-associated proteins with multiple identified pathogenic missense mutations. For 18 of the 20 proteins studied, substitutions at known positions of pathogenic mutations are significantly more likely to destabilize the native protein fold (as indicated by more positive values of ∆∆G). Thus, positions identified as sites of disease-associated mutations, as opposed to non-disease-associated sites, are predicted to be more vulnerable to protein destabilization upon amino acid substitution. This finding supports the notion that destabilization of native protein structure underlies the pathogenicity of broad set of missense mutations, even in cases where reduced protein stability and/or aggregation are not characteristic of the disease state.

摘要

氨基酸取代导致的蛋白质不稳定被认为在广泛的人类遗传性疾病中起着重要作用,而不仅仅是那些已知涉及蛋白质错误折叠和聚集的疾病。为了验证这一假设,我们通过计算评估了20种与疾病相关的蛋白质中所有可能的氨基酸取代对蛋白质稳定性的影响,这些蛋白质有多个已确定的致病性错义突变。在所研究的20种蛋白质中的18种中,致病性突变已知位置的取代显著更有可能使天然蛋白质折叠不稳定(由∆∆G的正值更大表明)。因此,与非疾病相关位点相反,被确定为疾病相关突变位点的位置预计在氨基酸取代后更容易受到蛋白质不稳定的影响。这一发现支持了这样一种观点,即天然蛋白质结构的不稳定是广泛的错义突变致病性的基础,即使在蛋白质稳定性降低和/或聚集不是疾病状态特征的情况下也是如此。

相似文献

1
Protein Destabilization as a Common Factor in Diverse Inherited Disorders.
J Mol Evol. 2016 Jan;82(1):11-6. doi: 10.1007/s00239-015-9717-5. Epub 2015 Nov 19.
3
Vulnerability of newly synthesized proteins to proteostasis stress.
J Cell Sci. 2016 May 1;129(9):1892-901. doi: 10.1242/jcs.176479. Epub 2016 Mar 29.
4
Genetic analysis of protein stability and function.
Annu Rev Genet. 1989;23:289-310. doi: 10.1146/annurev.ge.23.120189.001445.
5
Protein kinetic stability.
Biophys Chem. 2010 May;148(1-3):1-15. doi: 10.1016/j.bpc.2010.02.004. Epub 2010 Feb 11.
6
Identification of pathogenic missense mutations using protein stability predictors.
Sci Rep. 2020 Sep 21;10(1):15387. doi: 10.1038/s41598-020-72404-w.
7
sHSP in the eye lens: crystallin mutations, cataract and proteostasis.
Int J Biochem Cell Biol. 2012 Oct;44(10):1687-97. doi: 10.1016/j.biocel.2012.02.015. Epub 2012 Mar 2.
8
Proteostasis impairment in protein-misfolding and -aggregation diseases.
Trends Cell Biol. 2014 Sep;24(9):506-14. doi: 10.1016/j.tcb.2014.05.003. Epub 2014 Jun 16.
9
Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein.
Gastroenterology. 2006 Nov;131(5):1408-17. doi: 10.1053/j.gastro.2006.08.044. Epub 2006 Aug 22.
10
Disorders of protein biogenesis and stability.
Protein Pept Lett. 2011 Feb;18(2):110-21. doi: 10.2174/092986611794475075.

引用本文的文献

1
Characterization of PROTAC specificity and endogenous protein interactomes using ProtacID.
Nat Commun. 2025 Aug 29;16(1):8089. doi: 10.1038/s41467-025-63357-7.
2
Multiplexed assays of variant effect for clinical variant interpretation.
Nat Rev Genet. 2025 Jul 21. doi: 10.1038/s41576-025-00870-x.
3
Image-based, pooled phenotyping reveals multidimensional, disease-specific variant effects.
bioRxiv. 2025 Jul 5:2025.07.03.663081. doi: 10.1101/2025.07.03.663081.
9
Site-saturation mutagenesis of 500 human protein domains.
Nature. 2025 Jan;637(8047):885-894. doi: 10.1038/s41586-024-08370-4. Epub 2025 Jan 8.
10
Plasminogen missense variants and their involvement in cardiovascular and inflammatory disease.
Front Cardiovasc Med. 2024 Jun 25;11:1406953. doi: 10.3389/fcvm.2024.1406953. eCollection 2024.

本文引用的文献

1
Widespread macromolecular interaction perturbations in human genetic disorders.
Cell. 2015 Apr 23;161(3):647-660. doi: 10.1016/j.cell.2015.04.013.
3
Molecular mechanisms of disease-causing missense mutations.
J Mol Biol. 2013 Nov 1;425(21):3919-36. doi: 10.1016/j.jmb.2013.07.014. Epub 2013 Jul 16.
4
The complex molecular biology of amyotrophic lateral sclerosis (ALS).
Prog Mol Biol Transl Sci. 2012;107:215-62. doi: 10.1016/B978-0-12-385883-2.00002-3.
5
A method and server for predicting damaging missense mutations.
Nat Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248.
6
Automated inference of molecular mechanisms of disease from amino acid substitutions.
Bioinformatics. 2009 Nov 1;25(21):2744-50. doi: 10.1093/bioinformatics/btp528. Epub 2009 Sep 3.
9
Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.
Cell. 2008 Jul 25;134(2):341-52. doi: 10.1016/j.cell.2008.05.042.
10
Modeling backbone flexibility improves protein stability estimation.
Structure. 2007 Dec;15(12):1567-76. doi: 10.1016/j.str.2007.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验