Suppr超能文献

基于图像的汇总表型分析揭示了多维度、疾病特异性的变异效应。

Image-based, pooled phenotyping reveals multidimensional, disease-specific variant effects.

作者信息

Pendyala Sriram, Partington Katie, Bradley Nicholas, McEwen Abbye E, Straub Gwenneth, Kim Hyeon-Jin, Fayer Shawn, Holmes Daniel Lee, Sitko Katherine A, Vandi Allyssa J, Powell Rachel L, Friedman Clayton E, McDermot Evan, Kishore Nishka, Roth Frederick P, Rubin Alan F, Yang Kai-Chun, Starita Lea M, Noble William S, Fowler Douglas M

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Medical Scientist Training Program, University of Washington, Seattle, WA, USA.

出版信息

bioRxiv. 2025 Jul 5:2025.07.03.663081. doi: 10.1101/2025.07.03.663081.

Abstract

Genetic variants often produce complex phenotypic effects that confound current assays and predictive models. We developed Variant in situ sequencing (VIS-seq), a pooled, image-based method that measures variant effects on molecular and cellular phenotypes in diverse cell types. Applying VIS-seq to ~3,000 and variants yielded high-dimensional morphological profiles that captured variant-driven changes in protein abundance, localization, activity and cell architecture. We identified gain-of-function variants that reshape the nucleus and autism-associated variants that mislocalize. Morphological profiles predicted variant pathogenicity with near-perfect accuracy and distinguished autism-linked from tumor syndrome-linked variants. Most variants impacted a multidimensional continuum of phenotypes not recapitulated by any single functional readout. By linking protein variation to cell images at scale, we illuminate how variant effects cascade from molecular to subcellular to cell morphological phenotypes, providing a framework for resolving the complexity of variant function.

摘要

基因变异通常会产生复杂的表型效应,这使得当前的检测方法和预测模型难以应对。我们开发了原位变体测序(VIS-seq)技术,这是一种基于图像的汇集方法,可测量不同细胞类型中变异对分子和细胞表型的影响。将VIS-seq应用于约3000个变异,产生了高维形态学图谱,捕捉到了变异驱动的蛋白质丰度、定位、活性和细胞结构变化。我们鉴定出了重塑细胞核的功能获得性变异以及定位错误的自闭症相关变异。形态学图谱以近乎完美的准确性预测了变异的致病性,并区分了自闭症相关变异和肿瘤综合征相关变异。大多数变异影响了一个多维的表型连续体,任何单一的功能读数都无法概括。通过大规模地将蛋白质变异与细胞图像联系起来,我们阐明了变异效应如何从分子层面级联到亚细胞层面再到细胞形态表型,为解决变异功能的复杂性提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c857/12236469/f226d65156e0/nihpp-2025.07.03.663081v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验