Suppr超能文献

大数据时代的乳腺成像:结构化报告与数据挖掘

Breast Imaging in the Era of Big Data: Structured Reporting and Data Mining.

作者信息

Margolies Laurie R, Pandey Gaurav, Horowitz Eliot R, Mendelson David S

机构信息

1 Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1234, New York, NY 10029.

2 Department of Genetics and Genomic Science and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.

出版信息

AJR Am J Roentgenol. 2016 Feb;206(2):259-64. doi: 10.2214/AJR.15.15396. Epub 2015 Nov 20.

Abstract

OBJECTIVE

The purpose of this article is to describe structured reporting and the development of large databases for use in data mining in breast imaging.

CONCLUSION

The results of millions of breast imaging examinations are reported with structured tools based on the BI-RADS lexicon. Much of these data are stored in accessible media. Robust computing power creates great opportunity for data scientists and breast imagers to collaborate to improve breast cancer detection and optimize screening algorithms. Data mining can create knowledge, but the questions asked and their complexity require extremely powerful and agile databases. New data technologies can facilitate outcomes research and precision medicine.

摘要

目的

本文旨在描述结构化报告以及用于乳腺成像数据挖掘的大型数据库的开发。

结论

数百万次乳腺成像检查的结果通过基于BI-RADS词典的结构化工具进行报告。这些数据大多存储在可访问的介质中。强大的计算能力为数据科学家和乳腺成像专家合作改善乳腺癌检测及优化筛查算法创造了巨大机会。数据挖掘可以创造知识,但所提出的问题及其复杂性需要极其强大且灵活的数据库。新的数据技术可以促进结果研究和精准医学。

相似文献

6
Standardized diagnosis and reporting of breast cancer.乳腺癌的标准化诊断与报告
Diagn Interv Imaging. 2014 Jul-Aug;95(7-8):759-66. doi: 10.1016/j.diii.2014.06.006. Epub 2014 Jul 11.
10

引用本文的文献

6
A model for an undergraduate research experience program in quantitative sciences.定量科学本科研究体验项目模型。
J Stat Data Sci Educ. 2022;30(1):65-74. doi: 10.1080/26939169.2021.2016036. Epub 2022 Feb 22.
9
Role of US LI-RADS in the LI-RADS Algorithm.美国 LI-RADS 在 LI-RADS 算法中的作用。
Radiographics. 2019 May-Jun;39(3):690-708. doi: 10.1148/rg.2019180158.
10
Value of structured reporting in neuromuscular disorders.神经肌肉疾病中结构化报告的价值。
Radiol Med. 2019 Jul;124(7):628-635. doi: 10.1007/s11547-019-01012-0. Epub 2019 Mar 9.

本文引用的文献

1
Big biomedical data as the key resource for discovery science.大生物医学数据作为发现科学的关键资源。
J Am Med Inform Assoc. 2015 Nov;22(6):1126-31. doi: 10.1093/jamia/ocv077. Epub 2015 Jul 21.
5
Rethinking radiology informatics.重新思考放射学信息学。
AJR Am J Roentgenol. 2015 Apr;204(4):716-20. doi: 10.2214/AJR.14.13840.
7
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
9
Use of mobile devices for medical imaging.移动设备在医学成像中的应用。
J Am Coll Radiol. 2014 Dec;11(12 Pt B):1277-85. doi: 10.1016/j.jacr.2014.09.015. Epub 2014 Dec 1.
10
Image sharing: evolving solutions in the age of interoperability.图像共享:互操作性时代的演进解决方案。
J Am Coll Radiol. 2014 Dec;11(12 Pt B):1260-9. doi: 10.1016/j.jacr.2014.09.013. Epub 2014 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验