van Setten M J, Weigend F, Evers F
Institute of Nanotechnology, Karlsruhe Institute of Technology , P.O. Box 3640, D-76021 Karlsruhe, Germany.
Institute of Physical Chemistry, Karlsruhe Institute of Technology , P.O. Box 3640, D-76021 Karlsruhe, Germany.
J Chem Theory Comput. 2013 Jan 8;9(1):232-46. doi: 10.1021/ct300648t. Epub 2012 Dec 3.
The GW-technology corrects the Kohn-Sham (KS) single particle energies and single particle states for artifacts of the exchange-correlation (XC) functional of the underlying density functional theory (DFT) calculation. We present the formalism and implementation of GW adapted for standard quantum chemistry packages. Our implementation is tested using a typical set of molecules. We find that already after the first iteration of the self-consistency cycle, G0W0, the deviations of quasi-particle energies from experimental ionization potentials and electron affinities can be reduced by an order of magnitude against those of KS-DFT using GGA or hybrid functionals. Also, we confirm that even on this level of approximation there is a considerably diminished dependency of the G0W0-results on the XC-functional of the underlying DFT.
GW 技术针对基础密度泛函理论(DFT)计算中交换关联(XC)泛函的赝势修正了科恩 - 沈(KS)单粒子能量和单粒子态。我们展示了适用于标准量子化学软件包的 GW 形式体系及实现方法。我们的实现方法通过一组典型分子进行了测试。我们发现,在自洽循环的第一次迭代即 G0W0 之后,与使用广义梯度近似(GGA)或杂化泛函的 KS - DFT 相比,准粒子能量与实验电离势和电子亲和势的偏差可降低一个数量级。此外,我们证实,即使在这种近似水平下,G0W0 结果对基础 DFT 的 XC 泛函的依赖性也显著降低。