Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
J Chem Theory Comput. 2023 Jul 11;19(13):3915-3928. doi: 10.1021/acs.jctc.3c00246. Epub 2023 Jun 27.
We present a scalable single-particle framework to treat electronic correlation in molecules and materials motivated by Green's function theory. We derive a size-extensive Brillouin-Wigner perturbation theory from the single-particle Green's function by introducing the Goldstone self-energy. This new ground state correlation energy, referred to as Quasi-Particle MP2 theory (QPMP2), avoids the characteristic divergences present in both second-order Møller-Plesset perturbation theory and Coupled Cluster Singles and Doubles within the strongly correlated regime. We show that the exact ground state energy and properties of the Hubbard dimer are reproduced by QPMP2 and demonstrate the advantages of the approach for larger Hubbard models where the metal-to-insulator transition is qualitatively reproduced, contrasting with the complete failure of traditional methods. We apply this formalism to characteristic strongly correlated molecular systems and show that QPMP2 provides an efficient, size-consistent regularization of MP2.
我们提出了一种基于格林函数理论的可扩展单粒子框架,用于处理分子和材料中的电子相关。我们通过引入 Goldstone 自能,从单粒子格林函数中推导出了一个具有尺寸扩展性的Brillouin-Wigner 微扰理论。这种新的基态相关能量,称为准粒子 MP2 理论(QPMP2),避免了在强关联区域中第二阶 Møller-Plesset 微扰理论和耦合簇单双激发中存在的特征发散。我们表明,QPMP2 可以重现 Hubbard 二聚体的精确基态能量和性质,并展示了该方法在 Hubbard 模型中更大的优势,在这些模型中,金属-绝缘相变得到了定性重现,而传统方法则完全失效。我们将这一形式体系应用于典型的强关联分子体系,并表明 QPMP2 提供了一种有效的、尺寸一致的 MP2 正则化。