阴离子和第12族二价阳离子水合自由能的簇-连续介质计算

Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.

作者信息

Riccardi Demian, Guo Hao-Bo, Parks Jerry M, Gu Baohua, Liang Liyuan, Smith Jeremy C

机构信息

UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States.

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.

出版信息

J Chem Theory Comput. 2013 Jan 8;9(1):555-69. doi: 10.1021/ct300296k. Epub 2012 Dec 6.

Abstract

Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.

摘要

理解涉及第12族金属阳离子的水相过程与环境科学和生物科学都相关。在此,采用量子化学方法和极化连续介质模型来计算一系列二价第12族金属阳离子(Zn(2+)、Cd(2+)和Hg(2+))以及Cu(2+)与阴离子OH(-)、SH(-)、Cl(-)和F(-)的水合自由能。采用了一种簇-连续介质方法,其中离子和明确溶剂分子的气相簇被浸没在介电连续介质中。比较了两种定义溶质-水簇大小的方法,一种是明确水分子的数量保持恒定,另一种是根据最有利的水合自由能变化确定。还给出了使用各种极化连续介质模型获得的结果。详细分析了相关热力学循环的每个环节,以确定不同项如何对理论与实验之间观察到的平均符号误差(MSE)和误差标准偏差(STDEV)产生影响。发现对每组离子使用恒定数量的水分子会导致预测的相对趋势受益于误差抵消。总体而言,使用MP2和溶剂模型D极化连续介质模型(SMD)获得了最佳结果,阴离子使用8个明确水分子,金属阳离子使用10个,理论和实验水合自由能之间的STDEV为2.3 kcal mol(-1),MSE为0.9 kcal mol(-1),水合自由能范围从SH(-)的-72.4 kcal mol(-1)到Cu(2+)的-505.9 kcal mol(-1)。使用带有DFT-D3色散校正的B3PW91(B3PW91-D)和SMD,STDEV为3.3 kcal mol(-1),MSE为1.6 kcal mol(-1),从小二价金属阳离子水分子簇添加MP2校正后与完整的MP2结果非常吻合。使用B3PW91-D和SMD,阴离子使用2个明确水分子,二价金属阳离子使用6个,也与实验值有合理的吻合度,部分原因是与金属阳离子相关的偶然误差抵消。总体而言,结果表明量子化学簇-连续介质方法的谨慎应用为依赖于与溶剂的局部和远程静电相互作用的水相离子过程提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索