Suppr超能文献

Interpretation and Quantification of Magnetic Interaction through Spin Topology.

作者信息

Paul Satadal, Misra Anirban

机构信息

Department of Chemistry, University of North Bengal, Siliguri, PIN 734 013, West Bengal, India.

出版信息

J Chem Theory Comput. 2012 Mar 13;8(3):843-53. doi: 10.1021/ct2006506. Epub 2012 Feb 10.

Abstract

This work develops a formalism to quantify the interaction among unpaired spins from the ground state spin topology. Magnetic systems where the spins are coupled through direct exchange and superexchange are chosen as references. Starting from a general Hamiltonian, an effective Hamiltonian is obtained in terms of spin density which is utilized to compute exchange coupling constants in magnetic systems executing direct exchange. The high-spin-low-spin energy gap, required to extract the coupling constant, is obtained through the broken symmetry approach within the framework of density functional theory. On the other hand, a perturbative approach is adopted to address the superexchange process. Spin transfer in between the sites in the exchange pathway is found to govern the magnetic nature of a molecule executing superexchange. The metal-ligand magnetic interaction is estimated using the second order perturbation energy for ligand to metal charge transfer and spin densities on the concerned sites. Using the present formalism, the total coupling constant in a superexchange process is also partitioned into the contributions from metal-ligand and metal-metal interactions. Sign and magnitude of the exchange coupling constants, derived through the present formalism, are found to be in parity with those obtained using the well-known spin projection technique. Moreover, in all of the cases, the ground state spin topology is found to complement the sign of coupling constants. Thus, the spin topology turns into a simple and logical means to interpret the nature of exchange interaction. The spin density representation in the present case resembles McConnell's spin density Hamiltonian and in turn validates it.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验