Science of Advanced Materials, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
J Chem Phys. 2013 May 7;138(17):174115. doi: 10.1063/1.4802776.
We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.
我们提出了一种通过电子能量相对于局部自旋方向的解析导数来从单个自旋构型计算磁耦合参数的方法。该方法除了在海森堡-狄拉克哈密顿量和标准的 Kohn-Sham 密度泛函理论计算中发现的那些近似之外,没有引入新的近似,并且在理想的海森堡系统的极限下,它再现了由自旋投影能差确定的耦合。我们的方法采用了广义微扰约束密度泛函理论,其中通过耦合微扰理论的解析导数获得了约束下二阶能量的精确表达式。当金属原子磁矩之间的相对角度作为约束条件时,这允许我们从高自旋构型的局部自旋方向导数计算系统的所有磁交换耦合。由于我们的方法相对于自旋中心数量的计算复杂度相对于破对称能量差方法有利,因此为在大型多核过渡金属配合物中探索磁性提供了可能性。在这项工作中,我们概述了这种方法的动机、理论和实现,并提出了几种模型体系和过渡金属配合物的结果,使用了各种密度泛函近似和 Hartree-Fock。