Huang Danzhi, Caflisch Amedeo
Department of Biochemistry, University of Zürich , Winterthurerstrasse 190 CH-8057 Zürich, Switzerland.
J Chem Theory Comput. 2012 May 8;8(5):1786-94. doi: 10.1021/ct300032r. Epub 2012 Apr 24.
The drug Darunavir (DRV) is a potent inhibitor of HIV-1 protease (PR), a homodimeric essential enzyme of the AIDS virus. Recent experimental data suggest that DRV is able to prevent dimerization of HIV-1 PR, which, together with its high affinity for the mature enzyme, has been linked to the high genetic barrier to the development of viral resistance. The mechanism of dimerization inhibition and the binding mode(s) of DRV to monomeric HIV-1 PR are unknown. Here, multiple molecular dynamics simulations with explicit solvent (for a total of 11 μs with the CHARMM force field and 1 μs with the Amber force field) show that the monomer of HIV-1 PR is structurally stable and reveal a major binding mode of DRV. This binding mode is stabilized by favorable interactions between the apolar groups of DRV and the hydrophobic residues Ile32, Ile47, Ile50, Ile54, Pro79, Val82, and Ile84. The binding mode to monomeric HIV-1 PR identified by molecular dynamics is different from the two binding modes observed in the crystal structure of the complex with dimeric HIV-1 PR. As an example, there are no interactions between DRV and the catalytic Asp25 in the binding mode to monomeric HIV-1 PR revelead by the simulations. In contrast, the simulations show extensive and stable interactions between DRV and the flap (residues 46-55), which are likely to sterically hinder the formation of the flap interface as observed in the dimeric structure. Which of the two mechanisms of inhibition (dimerization inhibition by association with the flap or binding to the active site of the mature enzyme) dominates might depend on the HIV-1 PR mutations, and it is likely that dimerization inhibition is predominant for multiple mutations at the active site in multidrug resistant strains.
药物达芦那韦(DRV)是一种有效的HIV-1蛋白酶(PR)抑制剂,HIV-1蛋白酶是艾滋病病毒的一种同二聚体必需酶。最近的实验数据表明,DRV能够阻止HIV-1 PR的二聚化,这与其对成熟酶的高亲和力一起,与病毒耐药性发展的高遗传屏障有关。DRV抑制二聚化的机制以及它与单体HIV-1 PR的结合模式尚不清楚。在这里,使用显式溶剂进行的多个分子动力学模拟(使用CHARMM力场总共模拟11微秒,使用Amber力场模拟1微秒)表明,HIV-1 PR的单体在结构上是稳定的,并揭示了DRV的一种主要结合模式。这种结合模式通过DRV的非极性基团与疏水残基Ile32、Ile47、Ile50、Ile54、Pro79、Val82和Ile84之间的有利相互作用而得以稳定。通过分子动力学确定的与单体HIV-1 PR的结合模式不同于在与二聚体HIV-1 PR复合物的晶体结构中观察到的两种结合模式。例如,在模拟揭示的与单体HIV-1 PR的结合模式中,DRV与催化性天冬氨酸25之间没有相互作用。相反,模拟显示DRV与瓣片(残基46 - 55)之间存在广泛且稳定的相互作用,这可能在空间上阻碍在二聚体结构中观察到的瓣片界面的形成。两种抑制机制(通过与瓣片结合抑制二聚化或与成熟酶的活性位点结合)中哪一种起主导作用可能取决于HIV-1 PR的突变情况,并且对于多药耐药菌株中活性位点的多个突变,抑制二聚化可能占主导。