Simonsohn Uri, Simmons Joseph P, Nelson Leif D
Wharton School, University of Pennsylvania.
Haas School of Business, University of California, Berkeley.
J Exp Psychol Gen. 2015 Dec;144(6):1146-52. doi: 10.1037/xge0000104.
When studies examine true effects, they generate right-skewed p-curves, distributions of statistically significant results with more low (.01 s) than high (.04 s) p values. What else can cause a right-skewed p-curve? First, we consider the possibility that researchers report only the smallest significant p value (as conjectured by Ulrich & Miller, 2015), concluding that it is a very uncommon problem. We then consider more common problems, including (a) p-curvers selecting the wrong p values, (b) fake data, (c) honest errors, and (d) ambitiously p-hacked (beyond p < .05) results. We evaluate the impact of these common problems on the validity of p-curve analysis, and provide practical solutions that substantially increase its robustness.
当研究检验真实效应时,它们会产生右偏的p曲线,即具有统计学显著性结果的分布,其中低p值(0.01)比高p值(0.04)更多。还有什么会导致右偏的p曲线呢?首先,我们考虑研究人员只报告最小的显著性p值的可能性(如乌尔里希和米勒在2015年所推测的),并得出这是一个非常罕见的问题的结论。然后我们考虑更常见的问题,包括(a)p曲线分析者选择了错误的p值,(b)虚假数据,(c)诚实的错误,以及(d)过度的p值操纵(超出p < 0.05)结果。我们评估这些常见问题对p曲线分析有效性的影响,并提供能大幅提高其稳健性的实际解决方案。