Doshi Urmi, Hamelberg Donald
Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States.
J Chem Theory Comput. 2012 Nov 13;8(11):4004-12. doi: 10.1021/ct3004194. Epub 2012 Sep 11.
In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.
在增强采样技术中,由于统计权重的巨大变化和有效采样大小的减小,重新加权系综属性的精度常常会降低。为了减轻这种重新加权问题,在此我们提出一种通用的加速分子动力学(aMD)方法,其中只有可旋转二面角受到aMD(RaMD)的作用,这与典型的实现方式不同,在典型实现中所有二面角都被加速(全aMD)。不可旋转和非正则二面角对构象变化或不同的旋转异构体状态的重要性较低。不加速它们可避免因与最小能量构象的微小偏差而导致势能急剧增加,并提高RaMD的精度。我们展示了对两种模型二肽Ace-Ala-Nme和Ace-Trp-Nme的基准研究,分别使用正常分子动力学(MD)、全aMD和RaMD进行模拟。我们使用一种理论对两种形式的aMD的性能进行了系统比较,该理论允许对采样点的有效数量和相关不确定性进行定量估计。我们的结果表明,对于与全aMD相同的加速水平和模拟长度,RaMD导致有效样本大小的损失显著减少,因此,在φ-ψ空间采样中的准确性提高。根据肽和加速水平的不同,RaMD从短5到1000倍的模拟长度中就能产生与全aMD相当的准确性。与全aMD相比,在速度和准确性方面的这种提高非常显著,这表明RaMD是一种用于采样更大生物分子的有前途的方法。