Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain.
Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-3 70 Wroclaw, Poland.
Nanoscale. 2016 Jan 7;8(1):300-8. doi: 10.1039/c5nr06419h.
An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er(3+),Yb(3+) upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is possible to unequivocally determine, in real time, their three-dimensional orientation when optically trapped. In single-beam traps, polarized single particle spectroscopy has concluded that UCNRs orientate parallel to the propagation axis of the trapping beam. On the other hand, when multiple-beam optical tweezers are used, single particle polarization spectroscopy demonstrated how full spatial control over UCNR orientation can be achieved by changing the trap-to-trap distance as well as the relative orientation between optical traps. All these results show the possibility of real time three-dimensional manipulation and tracking of anisotropic nanoparticles with wide potential application in modern nanobiophotonics.
本文展示了一种明确确定光操纵的 NaYF4:Er(3+)、Yb(3+)上转换纳米棒 (UCNRs) 三维方向的方法。单个和多个共振光阱中单个 UCNR 的长期固定化允许进行稳定的单个 UCNR 光谱研究。基于 UCNR 的强偏振相关上转换发光,可以在光捕获时实时明确确定其三维方向。在单光束陷阱中,偏振单粒子光谱学得出结论,UCNRs 与捕获光束的传播轴平行取向。另一方面,当使用多光束光镊时,单粒子偏振光谱学证明了如何通过改变陷阱间距离以及光阱之间的相对方向来实现 UCNR 方向的完全空间控制。所有这些结果表明,具有广泛的现代纳米生物光子学应用潜力的各向异性纳米粒子的实时三维操纵和跟踪是可能的。