Maurice Rémi, Bastardis Roland, Graaf Coen de, Suaud Nicolas, Mallah Talal, Guihéry Nathalie
Laboratoire de Chimie et Physique Quantiques, IRSAMC/UMR5626, Université de Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cédex 4, France, Laboratoire de Mathématiques, Physiques et Systemes, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France, Departament de Química Física i Inorganica, Universitat Rovira i Virgili, Marcel lí Domingo s/n, 43007 Tarragona, Spain, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris sud 11, 91405 Orsay, France, and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain.
J Chem Theory Comput. 2009 Nov 10;5(11):2977-84. doi: 10.1021/ct900326e. Epub 2009 Oct 2.
Monometallic Ni(II) and Co(II) complexes with large magnetic anisotropy are studied using correlated wave function based ab initio calculations. Based on the effective Hamiltonian theory, we propose a scheme to extract both the parameters of the zero-field splitting (ZFS) tensor and the magnetic anisotropy axes. Contrarily to the usual theoretical procedure of extraction, the method presented here determines the sign and the magnitude of the ZFS parameters in any circumstances. While the energy levels provide enough information to extract the ZFS parameters in Ni(II) complexes, additional information contained in the wave functions must be used to extract the ZFS parameters of Co(II) complexes. The effective Hamiltonian procedure also enables us to confirm the validity of the standard model Hamiltonian to produce the magnetic anisotropy of monometallic complexes. The calculated ZFS parameters are in good agreement with high-field, high-frequency electron paramagnetic resonance spectroscopy and frequency domain magnetic resonance spectroscopy data. A methodological analysis of the results shows that the ligand-to-metal charge transfer configurations must be introduced in the reference space to obtain quantitative agreement with the experimental estimates of the ZFS parameters.
使用基于相关波函数的从头算方法研究了具有大磁各向异性的单金属镍(II)和钴(II)配合物。基于有效哈密顿理论,我们提出了一种方案来提取零场分裂(ZFS)张量的参数和磁各向异性轴。与通常的提取理论程序相反,这里提出的方法在任何情况下都能确定ZFS参数的符号和大小。虽然能级提供了足够的信息来提取镍(II)配合物中的ZFS参数,但必须使用波函数中包含的额外信息来提取钴(II)配合物的ZFS参数。有效哈密顿程序还使我们能够确认标准模型哈密顿量产生单金属配合物磁各向异性的有效性。计算得到的ZFS参数与高场、高频电子顺磁共振光谱和频域磁共振光谱数据吻合良好。对结果的方法学分析表明,必须在参考空间中引入配体到金属的电荷转移构型,才能与ZFS参数的实验估计值取得定量一致。