Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
Inorg Chem. 2012 Jul 2;51(13):7218-31. doi: 10.1021/ic300453y. Epub 2012 Jun 14.
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.
在这项工作中,采用磁强计和高频高场电子顺磁共振波谱(HFEPR)来确定非克拉默斯,S = 1,拟八面体顺式-[Ni(II){(OPPh(2))(EPPh(2)N)}(2)(sol)(2)](E = S,Se;sol = DMF,THF)配合物的自旋哈密顿(SH)参数。这些化合物的 X 射线晶体学研究表明,由于 Ni(II)配位溶剂分子或配体 E 原子的性质,NiO(4)E(2)配位环境具有高度各向异性,并且存在细微的结构差异。研究了这些结构特征对配合物磁性质的影响。准确的 HFEPR 确定的 SH 零场分裂(zfs)D 和 E 参数以及结构数据为系统的密度泛函理论(DFT)和多组态从头算计算分析提供了基础,旨在进一步阐明配合物的电子结构。DFT 方法仅提供定性有用的数据。但是,即使是入门级的从头算方法也可以为研究的磁性提供良好的结果,前提是对磁性性质的计算超出了自旋轨道耦合(SOC)相互作用的二阶处理。这是通过准简并微扰理论与状态平均全活性空间自洽场计算相结合来实现的。通过多组态从头算方法(例如二阶 N 电子价微扰理论 NEVPT2、专用组态相互作用和面向光谱的组态相互作用)恢复动态相关,计算出的 D 参数的准确性得到了提高。计算表明,这些配合物中 D 的大小(∼3-7 cm(-1))主要由多个 SOC 贡献主导,对其起源进行了详细分析。此外,观察到的大的菱形范围(E / D = 0.16-0.33)归因于高度扭曲的金属配位球。特别重要的是,这项工作提供了有关 Se 配位对 Ni(II)的 zfs 效应的见解。总的来说,提供了一种实验和理论相结合的方法,用于探测八面体 Ni(II)配合物的电子结构。