Huang Wei, Lin Zhixiong, van Gunsteren Wilfred F
Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland.
J Chem Theory Comput. 2011 May 10;7(5):1237-43. doi: 10.1021/ct100747y. Epub 2011 Apr 20.
The recently developed GROMOS 54A7 force field, a modification of the 53A6 force field, is validated by simulating the folding equilibrium of two β-peptides which show different dominant folds, i.e., a 314-helix and a hairpin, using three different force fields, i.e., GROMOS 45A3, 53A6, and 54A7. The 54A7 force field stabilizes both folds, and the agreement of the simulated NOE atom-atom distances with the experimental NMR data is slightly improved when using the 54A7 force field, while the agreement of the (3)J couplings with experimental results remains essentially unchanged when varying the force field. The 54A7 force field developed to improve the stability of α-helical structures in proteins can thus be safely used in simulations of β-peptides.
最近开发的GROMOS 54A7力场是对53A6力场的改进,通过使用三种不同的力场,即GROMOS 45A3、53A6和54A7,模拟两种显示不同主要折叠方式(即314螺旋和发夹结构)的β-肽的折叠平衡来进行验证。54A7力场使两种折叠方式都更稳定,并且在使用54A7力场时,模拟的NOE原子间距离与实验NMR数据的一致性略有改善,而当改变力场时,(3)J耦合与实验结果的一致性基本保持不变。因此,为提高蛋白质中α-螺旋结构稳定性而开发的54A7力场可安全地用于β-肽的模拟。