Soares T A, Daura X, Oostenbrink C, Smith L J, van Gunsteren W F
Laboratory of Physical Chemistry, ETH Hönggerberg Zürich, 8093 Zürich, Switzerland.
J Biomol NMR. 2004 Dec;30(4):407-22. doi: 10.1007/s10858-004-5430-1.
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43Alpha1 and a new set 45Alpha3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, (3)J(NHalpha) and (3)J(alphabeta) coupling constants, and (15)N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45Alpha3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43Alpha1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone (3)J(HNalpha)-coupling constants and (1)H-(15)N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain (3)J(alphabeta)-coupling constants and (1)H-(15)N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.
蛋白质分子动力学(MD)模拟的质量严重依赖于所使用的生物分子力场。此类力场由力场参数集定义,这些参数集通常通过针对小分子性质与实验数据或理论数据进行校准来确定和改进。通过应用于诸如蛋白质等大分子,可以验证新的力场参数集。我们报告了在水中对鸡蛋清溶菌酶进行的两次3.5纳秒分子动力学模拟,分别应用了广泛使用的GROMOS力场参数集43Alpha1和新的参数集45Alpha3。根据核磁共振(NMR)光谱数据的核Overhauser效应(NOE)原子 - 原子距离界限、(3)J(NHα)和(3)J(αβ)耦合常数以及(15)N弛豫数据对这两个MD系综进行评估。结果表明,这两个参数集在重现结构性质方面表现相当。45Alpha3系综在满足源自NMR光谱的原子 - 原子距离界限方面略逊于43Alpha1系综,两个系综中大多数NOE距离违反情况都涉及位于蛋白质环或柔性区域的残基。在两次模拟中,收敛模式非常相似,相对于X射线和NMR模型结构的原子位置均方根偏差(RMSD)以及NOE质子间距离在1.0 - 1.5纳秒内收敛,而主链(3)J(HNα)耦合常数和(1)H - (15)N序参数收敛时间稍长,为1.0 - 2.0纳秒。正如预期的那样,在模拟时间段内,侧链(3)J(αβ)耦合常数和(1)H - (15)N序参数并非对所有残基都达到完全收敛。对于显示罕见结构转变的侧链尤其明显。当将每个模拟轨迹与一组较旧和较新的溶菌酶实验NOE数据进行比较时,发现较新的、更大的一组实验数据与每个模拟结果的吻合程度相同。换句话说,实验数据趋向于理论结果。