Wood Geoffrey P F, Rothlisberger Ursula
Laboratory of Computational Chemistry and Biochemistry, BCH 4107 EPF Lausanne, CH-1015 Lausanne, Switzerland.
J Chem Theory Comput. 2011 May 10;7(5):1552-63. doi: 10.1021/ct200156e. Epub 2011 Apr 22.
The distinct conformational dependence of chemical shifts caused by α-helices and β-sheets renders NMR chemical shift analysis a powerful tool for the structural determination of proteins. However, the time scale of NMR experiments can make a secondary structure assignment of highly flexible peptides or proteins, which may be converting between conformational substates, problematic. For instance the amyloid-β monomer, according to NMR chemical shifts, adopts a predominately random coil structure in aqueous solution (with <3% α-helical content). Molecular dynamics simulations, on the other hand, suggest that α-helical content can be significant (10-25%). In this paper, we explore the possible reasons for this discrepancy and show that the different results from experiments and theory are not necessarily mutually exclusive but may reflect a general problem of secondary structure assignment of conformationally flexible biomolecules.
由α螺旋和β折叠引起的化学位移具有明显的构象依赖性,这使得核磁共振化学位移分析成为确定蛋白质结构的有力工具。然而,核磁共振实验的时间尺度可能会使高度柔性的肽或蛋白质的二级结构归属变得困难,因为这些肽或蛋白质可能在构象亚态之间转换。例如,根据核磁共振化学位移,淀粉样β单体在水溶液中主要采用无规卷曲结构(α螺旋含量<3%)。另一方面,分子动力学模拟表明α螺旋含量可能相当可观(10 - 25%)。在本文中,我们探讨了这种差异的可能原因,并表明实验和理论得出的不同结果不一定相互排斥,而是可能反映了构象柔性生物分子二级结构归属的一个普遍问题。