Suppr超能文献

利用密度泛函理论探究对肽中¹⁵N、¹³Cα、¹³Cβ和¹³C'化学位移的多种影响。

Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.

作者信息

Xu Xiao-Ping, Case David A

机构信息

Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 USA.

出版信息

Biopolymers. 2002 Dec 15;65(6):408-23. doi: 10.1002/bip.10276.

Abstract

We have used density functional calculations on model peptides to study conformational effects on (15)N, (13)C alpha, (13)C beta, and (13)C' chemical shifts, associated with hydrogen bonding, backbone conformation, and side-chain orientation. The results show a significant dependence on the backbone torsion angles of the nearest three residues. Contributions to (15)N chemical shifts from hydrogen bonding (up to 8 ppm), backbone conformation (up to 13 ppm), side-chain orientation and neighborhood residue effects (up to 22 ppm) are significant, and a unified theory will be required to account for their behavior in proteins. In contrast to this, the dependence on sequence and hydrogen bonding is much less for (13)C alpha and (13)C beta chemical shifts (<0.5 ppm), and moderate for carbonyl carbon shifts (<2 ppm). The effects of side-chain orientation are mainly limited to the residue itself for both nitrogen and carbon, but the chi(1) effect is also significant for the nitrogen shift of the following residue and for the (13)C' shift of the preceding residue. The calculated results are used, in conjunction with an additive model of chemical shift contributions, to create an algorithm for prediction of (15)N and (13)C shifts in proteins from their structure; this includes a model to extrapolate results to regions of torsion angle space that have not been explicitly studied by density functional theory (DFT) calculations. Crystal structures of 20 proteins with measured shifts have been used to test the prediction scheme. Root mean square deviations between calculated and experimental shifts 2.71, 1.22, 1.31, and 1.28 ppm for N, C alpha, C beta, and C', respectively. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.

摘要

我们已对模型肽进行密度泛函计算,以研究氢键、主链构象和侧链取向对¹⁵N、¹³Cα、¹³Cβ和¹³C′化学位移的构象影响。结果表明,化学位移强烈依赖于最近三个残基的主链扭转角。氢键(高达8 ppm)、主链构象(高达13 ppm)、侧链取向和相邻残基效应(高达22 ppm)对¹⁵N化学位移的贡献显著,需要一个统一的理论来解释它们在蛋白质中的行为。与此相反,¹³Cα和¹³Cβ化学位移对序列和氢键的依赖性要小得多(<0.5 ppm),羰基碳位移的依赖性适中(<2 ppm)。侧链取向对氮和碳化学位移的影响主要局限于残基本身,但χ₁效应对于后续残基的氮位移和前一个残基的¹³C′位移也很显著。计算结果与化学位移贡献的加和模型相结合,创建了一种根据蛋白质结构预测¹⁵N和¹³C位移的算法;这包括一个模型,可将结果外推到密度泛函理论(DFT)计算未明确研究的扭转角空间区域。已使用20种具有测量位移的蛋白质的晶体结构来测试预测方案。N、Cα、Cβ和C′的计算位移与实验位移之间的均方根偏差分别为2.71、1.22、1.31和1.28 ppm。这种预测算法应有助于核磁共振谱峰归属、晶体和溶液结构比较以及结构优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验