Xia Xue, Longo Liam M, Sutherland Mason A, Blaber Michael
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300.
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
Protein Sci. 2016 Jul;25(7):1227-40. doi: 10.1002/pro.2848. Epub 2015 Dec 10.
The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome.
折叠核(FN)是蛋白质一级结构中的一个隐蔽元件,它能促成高效的折叠途径,并且是蛋白质结构进化中假定的可遗传元件;然而,关于随着复杂蛋白质结构从更简单的肽基序进化而来时FN如何发生结构变化,人们几乎一无所知。我们通过ϕ值分析报告了一种设计的纯对称β-三叶形蛋白的FN的特征。我们比较了β-三叶形进化轨迹上关键可折叠中间体的结构和折叠特性。结果表明,在基因融合事件中FN的结构获得,其中纳入了由基因融合产生的新型转角结构。此外,FN通过循环置换进行调整以应对不稳定的功能突变。β-三叶形结构固有的C3循环对称性使得通过循环置换实现FN可塑性成为可能,这确定了一种可能的选择优势,有助于解释蛋白质组中循环结构对称性的普遍存在。