Martín-García Elena, Bourgoin Lucie, Cathala Adeline, Kasanetz Fernando, Mondesir Miguel, Gutiérrez-Rodriguez Ana, Reguero Leire, Fiancette Jean-François, Grandes Pedro, Spampinato Umberto, Maldonado Rafael, Piazza Pier Vincenzo, Marsicano Giovanni, Deroche-Gamonet Véronique
INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France.
University of Bordeaux, Bordeaux, France.
Neuropsychopharmacology. 2016 Aug;41(9):2192-205. doi: 10.1038/npp.2015.351. Epub 2015 Nov 27.
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.
1型大麻素受体(CB1)调节众多神经行为过程,因此被作为治疗多种精神和神经疾病的靶点进行研究。然而,以往的研究通过对CB1进行整体靶向研究,而未区分其在谷氨酸能神经元和γ-氨基丁酸能神经元上的两种主要神经元定位。在可卡因成瘾的背景下,这种缺乏选择性至关重要,因为谷氨酸能和γ-氨基丁酸能神经元传递参与了该疾病的不同方面。为了确定CB1根据其两种主要神经元定位对可卡因觅求是否发挥不同的控制作用,我们使用了在皮质谷氨酸能神经元(Glu-CB1)或前脑γ-氨基丁酸能神经元(GABA-CB1)中缺失CB1的突变小鼠。在Glu-CB1小鼠中,基因缺失涉及背侧端脑,包括新皮质、古皮质、原皮质、海马结构和杏仁核的皮质部分。在GABA-CB1小鼠中,基因缺失涉及几个皮质和非皮质区域,包括背侧纹状体、伏隔核、丘脑核和下丘脑核。我们测试了可卡因自我给药的互补成分,区分了初级效应和条件效应的影响。使用体内微透析和体外电生理学方法探究了每种表型背后的机制。我们发现,前脑γ-氨基丁酸能神经元中的CB1表达控制小鼠对可卡因的敏感性,而皮质谷氨酸能神经元中的CB1表达控制联想学习过程。相应地,在伏隔核中,GABA-CB1受体控制可卡因诱导的多巴胺释放,而Glu-CB1受体控制AMPA受体/NMDA受体比率;这是突触可塑性的一个标志物。我们的研究结果表明,Glu-CB1和GABA-CB1活性平衡的改变存在关键差异,这可能参与了对可卡因滥用和成瘾的易感性。此外,这些新见解推进了我们对CB1神经病理生理学的理解。