Guidotti Serena, Minguzzi Manuela, Platano Daniela, Cattini Luca, Trisolino Giovanni, Mariani Erminia, Borzì Rosa Maria
Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy.
Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy.
PLoS One. 2015 Nov 30;10(11):e0143865. doi: 10.1371/journal.pone.0143865. eCollection 2015.
Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy.
In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining.
In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10.
In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.
近期证据表明,糖原合成酶激酶3(GSK3)活性在骨关节炎(OA)中具有软骨保护作用,但与此同时,其失活也被认为是一种抗炎治疗选择。在此,我们评估了OA膝关节软骨中GSK3β在体内的失活程度以及体外GSK3β失活下游的分子事件,以评估它们对细胞衰老和肥大的影响。
分析软骨中磷酸化GSK3β的体内水平,并通过8-氧代脱氧鸟苷染色评估氧化损伤。通过对线粒体追踪染料染色和活性氧(ROS)产生(2',7'-二氯荧光素二乙酸酯染色)进行联合共聚焦显微镜分析,评估GSK3β失活(使用氯化锂或SB216763)对原代人软骨细胞增殖的体外影响。通过蛋白质印迹法(γH2AX、生长停滞和DNA损伤诱导蛋白45β(GADD45β)和p21)、细胞周期的流式细胞术分析和光散射特性、衰老相关β半乳糖苷酶活性的定量评估以及过碘酸希夫染色(PAS),研究对DNA损伤和衰老的下游影响。
与非肥胖OA患者的软骨细胞相比,肥胖OA患者的体内软骨细胞显示出更高水平的磷酸化GSK3β、氧化损伤以及GADD45β和p21的表达。氯化锂在体外介导的GSK3β失活导致线粒体ROS产生增加,这导致细胞增殖减少、S期短暂停滞以及细胞衰老、大小和颗粒度增加。总体而言,蛋白质印迹数据支持了DNA损伤反应的发生,导致细胞衰老,γH2AX、GADD45β和p21增加。此外,氯化锂增强了8-氧代脱氧鸟苷染色、IKKα和基质金属蛋白酶10(MMP-10)的表达。
在关节软骨细胞中,GSK3β活性是维持增殖潜能和表型所必需的。相反,GSK3β失活虽然能维持软骨细胞存活,但会通过诱导肥大和衰老导致功能受损。事实上,GSK3β失活会导致ROS产生,引发氧化应激和DNA损伤反应。