School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany.
J Chem Theory Comput. 2008 Sep 9;4(9):1449-59. doi: 10.1021/ct800172j.
A set of 41 metal-ligand bond distances in 25 third-row transition-metal complexes, for which precise structural data are known in the gas phase, is used to assess optimized and zero-point averaged geometries obtained from DFT computations with various exchange-correlation functionals and basis sets. For a given functional (except LSDA) Stuttgart-type quasi-relativistic effective core potentials and an all-electron scalar relativistic approach (ZORA) tend to produce very similar geometries. In contrast to the lighter congeners, LSDA affords reasonably accurate geometries of 5d-metal complexes, as it is among the functionals with the lowest mean and standard deviations from experiment. For this set the ranking of some other popular density functionals, ordered according to decreasing standard deviation, is BLYP > VSXC > BP86 ≈ BPW91 ≈ TPSS ≈ B3LYP ≈ PBE > TPSSh > B3PW91 ≈ B3P86 ≈ PBE hybrid. In this case hybrid functionals are superior to their nonhybrid variants. In addition, we have reinvestigated the previous test sets for 3d- (Bühl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2, 1282-1290) and 4d- (Waller, M. P.; Bühl, M. J. Comput. Chem. 2007, 28, 1531-1537) transition-metal complexes using all-electron scalar relativistic DFT calculations in addition to the published nonrelativistic and ECP results. For this combined test set comprising first-, second-, and third-row metal complexes, B3P86 and PBE hybrid are indicated to perform best. A remarkably consistent standard deviation of around 2 pm in metal-ligand bond distances is achieved over the entire set of d-block elements.
一套 41 个金属-配体键长,涉及 25 个第三过渡系金属配合物,这些配合物的精确结构数据在气相中已知,用于评估从各种交换相关泛函和基组的 DFT 计算中得到的优化和零点平均几何形状。对于给定的泛函(除 LSDA 外),Stuttgart 型准相对论有效核势和全电子标量相对论方法(ZORA)往往会产生非常相似的几何形状。与较轻的同系物不同,LSDA 为 5d 金属配合物提供了相当准确的几何形状,因为它是与实验平均值和标准偏差最低的泛函之一。对于这个集合,根据标准偏差递减,一些其他流行的密度泛函的排序为 BLYP > VSXC > BP86 ≈ BPW91 ≈ TPSS ≈ B3LYP ≈ PBE > TPSSh > B3PW91 ≈ B3P86 ≈ PBE 混合。在这种情况下,混合泛函优于非混合变体。此外,我们还使用全电子标量相对论 DFT 计算重新研究了以前的 3d-(Bühl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2, 1282-1290)和 4d-(Waller, M. P.; Bühl, M. J. Comput. Chem. 2007, 28, 1531-1537)过渡金属配合物的测试集,除了已发表的非相对论和 ECP 结果外。对于这个包含第一、第二和第三过渡系金属配合物的组合测试集,B3P86 和 PBE 混合被表明表现最好。在整个 d 块元素集上,金属-配体键长的标准偏差达到了惊人的一致,约为 2 pm。