Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
J Phys Chem A. 2009 Sep 17;113(37):10133-41. doi: 10.1021/jp9061225.
This paper presents systematic data for 200 neutral diatomic molecules ML (M is a second- or third-row d-block metal and L = H, F, Cl, Br, I, C, N, O, S, or Se) computed with the density functionals TPSSh and BP86. With experimental structures and bond enthalpies available for many of these molecules, the computations first document the high accuracy of TPSSh, giving metal-ligand bond lengths with a mean absolute error of approximately 0.01 A for the second row and 0.03 A for the third row. TPSSh provides metal-ligand bond enthalpies with mean absolute errors of 37 and 44 kJ/mol for the second- and third-row molecules, respectively. Pathological cases (e.g., HgC and HgN) have errors of up to 155 kJ/mol, more than thrice the mean (observed with both functionals). Importantly, the systematic error component is negligible as measured by a coefficient of the linear regression line of 0.99. Equally important, TPSSh provides uniform accuracy across all three rows of the d-block, which is unprecedented and due to the 10% exact exchange, which is close to optimal for the d-block as a whole. This work provides an accurate and systematic prediction of electronic ground-state spins, characteristic metal-ligand bond lengths, and bond enthalpies for many as yet uncharacterized diatomics, of interest to researchers in the field of second- and third-row d-block chemistry. We stress that the success of TPSSh cannot be naively extrapolated to other special situations such as, e.g., metal-metal bonds. The high accuracy of the procedure further implies that the effective core functions used to model relativistic effects are necessary and sufficient for obtaining accurate geometries and bond enthalpies of second- and third-row molecular systems.
本文提供了 200 种中性双原子分子 ML(M 为第二或第三过渡金属,L 为 H、F、Cl、Br、I、C、N、O、S 或 Se)的系统数据,这些数据是使用密度泛函 TPSSh 和 BP86 计算得到的。对于许多这些分子,实验结构和键焓都可以获得,计算结果首先证明了 TPSSh 的高精度,它给出的金属-配体键长的平均绝对误差约为第二过渡金属为 0.01 A,第三过渡金属为 0.03 A。TPSSh 提供的金属-配体键焓的平均绝对误差分别为第二和第三过渡金属分子的 37 和 44 kJ/mol。病态案例(例如,HgC 和 HgN)的误差高达 155 kJ/mol,比平均值高出三倍多(两种函数都观察到)。重要的是,系统误差分量可以忽略不计,线性回归线的系数为 0.99。同样重要的是,TPSSh 为整个 d 区提供了一致的精度,这是前所未有的,这要归功于接近整体 d 区最佳值的 10%精确交换。这项工作为许多尚未被描述的双原子分子的电子基态自旋、特征金属-配体键长和键焓提供了准确和系统的预测,这对第二和第三过渡金属 d 区化学领域的研究人员很有兴趣。我们强调,TPSSh 的成功不能简单地外推到其他特殊情况,例如,金属-金属键。该方法的高精度进一步表明,用于模拟相对论效应的有效核函数对于获得第二和第三过渡金属分子体系的准确几何形状和键焓是必要和充分的。