Suppr超能文献

分化的肌肉对于果蝇气道系统的气体填充是必不可少的。

Differentiated muscles are mandatory for gas-filling of the Drosophila airway system.

作者信息

Wang Yiwen, Cruz Tina, Irion Uwe, Moussian Bernard

机构信息

Animal Genetics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany.

Department of Genetics, Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen 72076, Germany.

出版信息

Biol Open. 2015 Nov 30;4(12):1753-61. doi: 10.1242/bio.013086.

Abstract

At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila.

摘要

在发育末期,器官获得功能,从而在生物体与母体或保护卵分离时确保其自主性。在昆虫中,呼吸能力在幼虫孵化前气管系统充满气体时开始。这一过程的细胞和分子机制尚未完全了解。对肌肉畸形的果蝇胚胎表型分析表明,它们的气管系统无法充满气体。事实上,我们发现肌肉形成的主要调节因子如跛脚鸭和吹融很重要,而包括心肌和内脏肌在内的部分肌肉发育所涉及的因子对这一过程是可有可无的,这表明体肌(或其部分)对于气管终末分化至关重要。基于我们的表型数据,我们假设体肌缺陷严重程度与气体填充表型的外显率相关。这表明一种有限的分子或机械性肌肉信号调节气管分化。我们认为,类似于脊椎动物肺中平滑肌的功能,肌肉与气管壁弹性之间的物理力平衡可能对果蝇气管终末分化起决定性作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69aa/4736026/ea5d3a62d179/biolopen-4-013086-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验