Poveda Alaitz, Koivula Robert W, Ahmad Shafqat, Barroso Inês, Hallmans Göran, Johansson Ingegerd, Renström Frida, Franks Paul W
Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Clinical Research Center Building 91, Level 10, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden.
Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
Diabetologia. 2016 Mar;59(3):462-71. doi: 10.1007/s00125-015-3818-y. Epub 2015 Dec 1.
AIMS/HYPOTHESIS: We compared the ability of genetic (established type 2 diabetes, fasting glucose, 2 h glucose and obesity variants) and modifiable lifestyle (diet, physical activity, smoking, alcohol and education) risk factors to predict incident type 2 diabetes and obesity in a population-based prospective cohort of 3,444 Swedish adults studied sequentially at baseline and 10 years later.
Multivariable logistic regression analyses were used to assess the predictive ability of genetic and lifestyle risk factors on incident obesity and type 2 diabetes by calculating the AUC.
The predictive accuracy of lifestyle risk factors was similar to that yielded by genetic information for incident type 2 diabetes (AUC 75% and 74%, respectively) and obesity (AUC 68% and 73%, respectively) in models adjusted for age, age(2) and sex. The addition of genetic information to the lifestyle model significantly improved the prediction of type 2 diabetes (AUC 80%; p = 0.0003) and obesity (AUC 79%; p < 0.0001) and resulted in a net reclassification improvement of 58% for type 2 diabetes and 64% for obesity.
CONCLUSIONS/INTERPRETATION: These findings illustrate that lifestyle and genetic information separately provide a similarly high degree of long-range predictive accuracy for obesity and type 2 diabetes.
目的/假设:我们比较了遗传风险因素(已确诊的2型糖尿病、空腹血糖、2小时血糖和肥胖相关变异)和可改变的生活方式风险因素(饮食、体育活动、吸烟、饮酒和教育程度)对一个基于人群的前瞻性队列中3444名瑞典成年人发生2型糖尿病和肥胖的预测能力,该队列在基线时和10年后进行了连续研究。
采用多变量逻辑回归分析,通过计算曲线下面积(AUC)来评估遗传和生活方式风险因素对新发肥胖和2型糖尿病的预测能力。
在根据年龄、年龄平方和性别进行调整的模型中,生活方式风险因素对2型糖尿病(AUC分别为75%和74%)和肥胖(AUC分别为68%和73%)的预测准确性与遗传信息相似。在生活方式模型中加入遗传信息显著改善了对2型糖尿病(AUC为80%;p = 0.0003)和肥胖(AUC为79%;p < 0.0001)的预测,2型糖尿病的净重新分类改善率为58%,肥胖的净重新分类改善率为64%。
结论/解读:这些发现表明,生活方式和遗传信息分别为肥胖和2型糖尿病提供了相似程度的高度长期预测准确性。