Suppr超能文献

The Carbon Allotrope Hexagonite and Its Potential Synthesis from Cold Compression of Carbon Nanotubes.

作者信息

Bucknum M J, Castro E A

机构信息

INIFTA, Theoretical Chemistry Division, Suc. 4, C.C. 16, Universidad de La Plata, 1900 La Plata, Buenos Aires, Argentina.

出版信息

J Chem Theory Comput. 2006 May;2(3):775-81. doi: 10.1021/ct060003n.

Abstract

In a previous report, the approximate crystalline structure and electronic structure of a novel, hypothetical hexagonal carbon allotrope has been disclosed. Employing the approximate extended Hückel method, this C structure was determined to be a semiconducting structure. In contrast, a state-of-the-art density functional theory (DFT) optimization reveals the hexagonal structure to be metallic in band profile. It is built upon a bicyclo[2.2.2]-2,5,7-octatriene (barrelene) generating fragment molecule and is a Catalan network, with the Wells point symbol (6(6))2(6(3))3 and the corresponding Schläfli symbol (6, 3.4). As the network is entirely composed of hexagons and, in addition, possesses hexagonal symmetry, lying in space group P6/mmm (space group #191), it has been given the name hexagonite. The present report describes a density functional theory (DFT) optimization of the lattice parameters of the parent hexagonite structure, with the result giving the optimized lattice parameters of a = 0.477 nm and c = 0.412 nm. A calculation is then reported of a simple diffraction pattern of hexagonite from these optimized lattice parameters, with Bragg spacings enumerated for the lattice out to fourth order. Results of a synchrotron diffraction study of carbon nanotubes which underwent cold compression in a diamond anvil cell (DAC) to 100 GPa, in which the carbon nanotubes have evidently collapsed into a hitherto unknown hexagonal C polymorph, are then compared to the calculated diffraction pattern for the DFT optimized hexagonite structure. It is seen that a close fit is obtained to the experimental data, with a standard deviation over the 5 matched reflections being given by σx = 0.003107 nm/reflection.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验