Suppr超能文献

开壳层分子中的电荷与自旋电流:核磁共振与电子顺磁共振可观测量的统一描述。

Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

作者信息

Soncini Alessandro

机构信息

Department of Chemistry, Laboratory of Quantum Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.

出版信息

J Chem Theory Comput. 2007 Nov;3(6):2243-57. doi: 10.1021/ct700169h.

Abstract

The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

摘要

在自旋 - 轨道耦合趋近于零的极限情况下(例如对于有机自由基),从自旋和电荷电流密度矢量场的角度分析了开壳层分子的EPR超精细耦合张量和NMR核磁屏蔽张量理论。在受限开壳层Hartree - Fock、非受限Hartree - Fock和非受限GGA - DFT理论水平上实现了自旋和电荷电流密度响应的从头算计算。基于这种形式体系,我们引入了核超精细耦合密度的定义,它是一个位置的标量函数,可在分子域上对EPR可观测量进行划分。给出并讨论了小自由基的自旋和电荷电流密度以及超精细耦合密度的从头算图谱,以说明新引入方法的解释优势。通过感应电流密度的可视化,直接评估了最近的NMR实验,这些实验为中性苊烯基自由基的开壳层单线态煎饼键合二聚体中抗磁环电流的存在提供了证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验