Suppr超能文献

使用概率图形模型发现核受体调控的转录靶点。

Discovery of Transcriptional Targets Regulated by Nuclear Receptors Using a Probabilistic Graphical Model.

作者信息

Lee Mikyung, Huang Ruili, Tong Weida

机构信息

*NIH/National Center for Advancing Translational Sciences, Rockville, Maryland 20850 and.

FDA/National Center for Toxicological Research, Jefferson, Arkansas 72079

出版信息

Toxicol Sci. 2016 Mar;150(1):64-73. doi: 10.1093/toxsci/kfv261. Epub 2015 Dec 7.

Abstract

Nuclear receptors (NRs) are ligand-activated transcriptional regulators that play vital roles in key biological processes such as growth, differentiation, metabolism, reproduction, and morphogenesis. Disruption of NRs can result in adverse health effects such as NR-mediated endocrine disruption. A comprehensive understanding of core transcriptional targets regulated by NRs helps to elucidate their key biological processes in both toxicological and therapeutic aspects. In this study, we applied a probabilistic graphical model to identify the transcriptional targets of NRs and the biological processes they govern. The Tox21 program profiled a collection of approximate 10 000 environmental chemicals and drugs against a panel of human NRs in a quantitative high-throughput screening format for their NR disruption potential. The Japanese Toxicogenomics Project, one of the most comprehensive efforts in the field of toxicogenomics, generated large-scale gene expression profiles on the effect of 131 compounds (in its first phase of study) at various doses, and different durations, and their combinations. We applied author-topic model to these 2 toxicological datasets, which consists of 11 NRs run in either agonist and/or antagonist mode (18 assays total) and 203 in vitro human gene expression profiles connected by 52 shared drugs. As a result, a set of clusters (topics), which consists of a set of NRs and their associated target genes were determined. Various transcriptional targets of the NRs were identified by assays run in either agonist or antagonist mode. Our results were validated by functional analysis and compared with TRANSFAC data. In summary, our approach resulted in effective identification of associated/affected NRs and their target genes, providing biologically meaningful hypothesis embedded in their relationships.

摘要

核受体(NRs)是配体激活的转录调节因子,在生长、分化、代谢、繁殖和形态发生等关键生物学过程中发挥着至关重要的作用。核受体的破坏会导致不良健康影响,如核受体介导的内分泌干扰。全面了解由核受体调节的核心转录靶点有助于阐明其在毒理学和治疗学方面的关键生物学过程。在本研究中,我们应用概率图形模型来识别核受体的转录靶点及其所调控的生物学过程。Tox21项目以定量高通量筛选的形式,针对一组人类核受体对大约10000种环境化学物质和药物进行了分析,以评估它们破坏核受体的潜力。日本毒理基因组学项目是毒理基因组学领域最全面的努力之一,它生成了大规模的基因表达谱,涉及131种化合物(在其研究的第一阶段)在不同剂量、不同持续时间及其组合下的影响。我们将作者主题模型应用于这两个毒理学数据集,其中一个数据集包含11种以激动剂和/或拮抗剂模式运行的核受体(共18种检测),另一个数据集包含通过52种共享药物连接的203个人类体外基因表达谱。结果,确定了一组由一组核受体及其相关靶基因组成的聚类(主题)。通过以激动剂或拮抗剂模式运行的检测,鉴定了核受体的各种转录靶点。我们的结果通过功能分析得到验证,并与TRANSFAC数据进行了比较。总之,我们的方法有效地识别了相关/受影响的核受体及其靶基因,提供了蕴含在它们关系中的生物学上有意义的假设。

相似文献

3
The toxicogenomics of nuclear receptor agonists.核受体激动剂的毒理基因组学
Curr Opin Chem Biol. 2003 Aug;7(4):505-10. doi: 10.1016/s1367-5931(03)00080-2.
9
Application of dynamic topic models to toxicogenomics data.动态主题模型在毒理基因组学数据中的应用。
BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):368. doi: 10.1186/s12859-016-1225-0.
10
Genomic profiling in nuclear receptor-mediated toxicity.核受体介导毒性中的基因组分析。
Toxicol Pathol. 2007 Jun;35(4):474-94. doi: 10.1080/01926230701311351.

引用本文的文献

1
Application of dynamic topic models to toxicogenomics data.动态主题模型在毒理基因组学数据中的应用。
BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):368. doi: 10.1186/s12859-016-1225-0.

本文引用的文献

2
TCDD dysregulation of 13 AHR-target genes in rat liver.TCDD 对大鼠肝脏中 13 个 AHR 靶基因的调控作用。
Toxicol Appl Pharmacol. 2014 Feb 1;274(3):445-54. doi: 10.1016/j.taap.2013.12.004. Epub 2013 Dec 16.
6
Estrogen receptor prevents p53-dependent apoptosis in breast cancer.雌激素受体可防止乳腺癌中 p53 依赖性细胞凋亡。
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18060-5. doi: 10.1073/pnas.1018858109. Epub 2012 Oct 17.
8
Expression and regulation of human fetal-specific CYP3A7 in mice.人胎 CYP3A7 在小鼠中的表达与调控。
Endocrinology. 2012 Mar;153(3):1453-63. doi: 10.1210/en.2011-1020. Epub 2012 Jan 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验