Moxley Michael A, Beard Daniel A, Bazil Jason N
From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109.
From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
J Biol Chem. 2016 Feb 5;291(6):2712-30. doi: 10.1074/jbc.M115.676619. Epub 2015 Dec 7.
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.
哺乳动物E3是一种重要的线粒体酶,负责催化几种代谢物氧化分解代谢中的末端反应。作为丙酮酸脱氢酶复合体(PDHc)的一个组成部分,E3是代谢燃料选择的关键调节因子。E3通过改变丙酮酸脱氢酶激酶(该酶复合体的一种抑制剂)的亲和力来调节PDHc的活性,丙酮酸脱氢酶激酶的亲和力变化是由NAD(+)/NADH比值设定的硫辛酰胺部分的还原和乙酰化状态改变所导致的。因此,需要一个精确的E3动力学模型来预测哺乳动物整体的PDHc活性。在此,我们将大量文献数据集和新的平衡光谱实验与众多使用猪心E3独立收集的正向和反向稳态动力学测定相结合。后者的动力学测定首次在一个单一的一致数据集中展示了NAD(+)激活到抑制的pH依赖性转变。对实验数据进行分析,得出了一个热力学受限的E3四氧化还原态模型,该模型可模拟不同条件下的pH依赖性激活/抑制以及活性位点氧化还原状态。所开发的模型用于确定能使E3速率最大化的底物/产物条件,并表明由于非米氏行为,最大通量与经典定义的kcat不同。