Suppr超能文献

哺乳动物E3的全局动力学分析揭示了pH依赖性的NAD⁺/NADH调节、生理动力学可逆性和催化最佳条件。

Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum.

作者信息

Moxley Michael A, Beard Daniel A, Bazil Jason N

机构信息

From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109.

From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109

出版信息

J Biol Chem. 2016 Feb 5;291(6):2712-30. doi: 10.1074/jbc.M115.676619. Epub 2015 Dec 7.

Abstract

Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.

摘要

哺乳动物E3是一种重要的线粒体酶,负责催化几种代谢物氧化分解代谢中的末端反应。作为丙酮酸脱氢酶复合体(PDHc)的一个组成部分,E3是代谢燃料选择的关键调节因子。E3通过改变丙酮酸脱氢酶激酶(该酶复合体的一种抑制剂)的亲和力来调节PDHc的活性,丙酮酸脱氢酶激酶的亲和力变化是由NAD(+)/NADH比值设定的硫辛酰胺部分的还原和乙酰化状态改变所导致的。因此,需要一个精确的E3动力学模型来预测哺乳动物整体的PDHc活性。在此,我们将大量文献数据集和新的平衡光谱实验与众多使用猪心E3独立收集的正向和反向稳态动力学测定相结合。后者的动力学测定首次在一个单一的一致数据集中展示了NAD(+)激活到抑制的pH依赖性转变。对实验数据进行分析,得出了一个热力学受限的E3四氧化还原态模型,该模型可模拟不同条件下的pH依赖性激活/抑制以及活性位点氧化还原状态。所开发的模型用于确定能使E3速率最大化的底物/产物条件,并表明由于非米氏行为,最大通量与经典定义的kcat不同。

相似文献

2
A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
Biophys J. 2014 Dec 16;107(12):2993-3007. doi: 10.1016/j.bpj.2014.09.025.
4
The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.
Biochem J. 1990 Jul 1;269(1):101-5. doi: 10.1042/bj2690101.
6
Pig heart lipoamide dehydrogenase: solvent equilibrium and kinetic isotope effects.
Biochemistry. 1992 Mar 31;31(12):3065-72. doi: 10.1021/bi00127a006.

引用本文的文献

1
The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation).
Front Mol Med. 2021 Nov 16;1:777088. doi: 10.3389/fmmed.2021.777088. eCollection 2021.
2
Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis.
Cell Mol Life Sci. 2021 Dec;78(23):7451-7468. doi: 10.1007/s00018-021-03996-3. Epub 2021 Oct 31.
3
Detailed evaluation of pyruvate dehydrogenase complex inhibition in simulated exercise conditions.
Biophys J. 2021 Mar 2;120(5):936-949. doi: 10.1016/j.bpj.2021.01.018. Epub 2021 Jan 28.
4
Evidence of a preferred kinetic pathway in the carnitine acetyltransferase reaction.
Arch Biochem Biophys. 2020 Sep 30;691:108507. doi: 10.1016/j.abb.2020.108507. Epub 2020 Jul 22.
5
Modeling oxygen requirements in ischemic cardiomyocytes.
J Biol Chem. 2017 Jul 14;292(28):11760-11776. doi: 10.1074/jbc.M116.751826. Epub 2017 May 9.
6
Redox imbalance and mitochondrial abnormalities in the diabetic lung.
Redox Biol. 2017 Apr;11:51-59. doi: 10.1016/j.redox.2016.11.003. Epub 2016 Nov 17.

本文引用的文献

1
A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
Biophys J. 2014 Dec 16;107(12):2993-3007. doi: 10.1016/j.bpj.2014.09.025.
2
The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.
Life Sci. 2015 Jan 15;121:97-103. doi: 10.1016/j.lfs.2014.11.030. Epub 2014 Dec 11.
3
Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16508-13. doi: 10.1073/pnas.1419104111. Epub 2014 Nov 3.
4
The pyruvate dehydrogenase complexes: structure-based function and regulation.
J Biol Chem. 2014 Jun 13;289(24):16615-23. doi: 10.1074/jbc.R114.563148. Epub 2014 May 5.
5
Lipoamide channel-binding sulfonamides selectively inhibit mycobacterial lipoamide dehydrogenase.
Biochemistry. 2013 Dec 23;52(51):9375-84. doi: 10.1021/bi401077f. Epub 2013 Nov 26.
7
Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase.
Biophys J. 2013 Jul 16;105(2):343-55. doi: 10.1016/j.bpj.2013.05.033.
8
A century of enzyme kinetic analysis, 1913 to 2013.
FEBS Lett. 2013 Sep 2;587(17):2753-66. doi: 10.1016/j.febslet.2013.07.012. Epub 2013 Jul 12.
9
Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage.
Mol Cell Biochem. 2013 Apr;376(1-2):103-10. doi: 10.1007/s11010-012-1555-9. Epub 2013 Jan 8.
10
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure.
Biochim Biophys Acta. 2013 Apr;1833(4):857-65. doi: 10.1016/j.bbamcr.2012.08.014. Epub 2012 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验