Nascimento Daniel R, DePrince A Eugene
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
J Chem Phys. 2015 Dec 7;143(21):214104. doi: 10.1063/1.4936348.
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.
我们提出了一种结合腔量子电动力学/从头算电子结构的方法,用于在时域中模拟等离子体-分子相互作用。在此类模拟中通常使用的简单Jaynes-Cummings型模型哈密顿量被一种新的哈密顿量所取代,在新模型中,耦合系统的分子部分以完全从头算的方式处理,从而实现了对一般等离子体-分子相互作用的高效计算描述。相互极化效应可轻松纳入标准基态哈特里-福克计算中,且含时模拟具有与实时含时哈特里-福克理论相同的形式计算标度。作为原理证明,我们将这种广义方法应用于耦合分子-等离子体系统中类Fano共振的出现;此特征对纳米颗粒-分子间距以及分子相对于外部电场极化的取向非常敏感。