Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States.
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
J Phys Chem Lett. 2023 Jun 29;14(25):5901-5913. doi: 10.1021/acs.jpclett.3c01294. Epub 2023 Jun 21.
Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian. The key feature of this "parametrized QED" approach is that it provides the exact molecule-cavity interactions, limited by only approximations made in the electronic structure. Using time-dependent density functional theory, we demonstrated comparable accuracy with QED coupled cluster benchmark results for predicting potential energy surfaces in the ground and excited states and showed selected applications to light-harvesting and light-emitting materials. We anticipate that this framework will provide a set of general and powerful tools that enable direct simulation of exciton polaritons in molecule-cavity hybrid systems.
将耦合分子与光腔内部的量子化辐射场相结合,会产生一组新的光子-物质混合态,称为极化激元态。我们结合电子结构理论和量子电动力学(QED),使用模拟来研究分子极化激元。该框架将未受扰的电子绝热态与福克态基结合起来,以计算 QED 哈密顿量的本征态。这种“参数化 QED”方法的关键特点是,它提供了精确的分子-腔相互作用,仅受电子结构中所作近似的限制。我们使用含时密度泛函理论,展示了与 QED 耦合团簇基准结果相当的准确性,可用于预测基态和激发态的势能表面,并展示了在收集和发射材料方面的一些应用。我们预计,该框架将提供一组通用且强大的工具,可直接模拟分子-腔混合系统中的激子极化激元。