Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China.
Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Chem Soc Rev. 2016 Mar 7;45(5):1273-307. doi: 10.1039/c5cs00414d.
One of the critical issues in the industrial development of fuel cells (e.g., proton exchange membrane fuel cells, direct methanol fuel cells and biofuel cells) is the high cost, serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability of the platinum (Pt) as the preferred electrocatalysts for the oxygen reduction reaction (ORR) at the cathode. The development of novel noble-metal-free electrocatalysts with low cost, high activity and practical durability for ORR has been considered as one of the most active and competitive fields in chemistry and materials science. In this critical review, we will summarize recent advances on engineering advanced carbon nanomaterials with different dimensions for the rational design and synthesis of noble-metal-free oxygen reduction electrocatalysts including heteroatom-doped carbon nanomaterials, transition metal-based nanoparticle (NP)-carbon nanomaterial composites and especially the stable iron carbide (Fe3C)-based NP-carbon nanomaterial composites. Introducing advanced carbon nanomaterials with high specific surface area and stable structure into the noble-metal-free ORR field has not only led to a maximized electrocatalyst surface area for the electron transfer but also resulted in enhanced electrocatalyst stability for long-term operation. Therefore, the rational design and synthesis of noble-metal-free electrocatalysts based on heteroatoms, transition metal-based NPs and Fe3C-based NP functionalized carbon nanomaterials are of special relevance for their ORR applications, and represents a rapidly growing branch of research. The demonstrated examples in this review will open new directions on designing and optimizing advanced carbon nanomaterials for the development of extremely active and durable earth-abundant cathodic catalysts for fuel cell applications.
燃料电池(例如质子交换膜燃料电池、直接甲醇燃料电池和生物燃料电池)的工业发展面临的一个关键问题是成本高、中间耐受性差、阳极交叉、动力学迟缓以及铂(Pt)作为阴极氧还原反应(ORR)首选电催化剂的稳定性差。开发具有低成本、高活性和实用耐久性的新型非贵金属电催化剂,用于 ORR,被认为是化学和材料科学中最活跃和最具竞争力的领域之一。在这篇重要的综述中,我们将总结最近在工程先进碳纳米材料方面的进展,用于合理设计和合成非贵金属氧还原电催化剂,包括杂原子掺杂碳纳米材料、过渡金属基纳米颗粒(NP)-碳纳米材料复合材料,特别是稳定的碳化铁(Fe3C)-基 NP-碳纳米材料复合材料。将具有高比表面积和稳定结构的先进碳纳米材料引入非贵金属 ORR 领域,不仅使电催化剂的表面积最大化,有利于电子转移,而且还提高了电催化剂的长期运行稳定性。因此,基于杂原子、过渡金属基 NPs 和 Fe3C 基 NP 功能化碳纳米材料的非贵金属电催化剂的合理设计和合成对于它们的 ORR 应用具有特殊意义,代表了一个快速发展的研究分支。本综述中的实例将为设计和优化先进碳纳米材料开辟新的方向,以开发用于燃料电池应用的极活跃和耐用的丰富地球阴极催化剂。