Suppr超能文献

从基于碳的纳米管到纳米笼,用于先进的能量转换和存储。

From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

机构信息

Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China.

出版信息

Acc Chem Res. 2017 Feb 21;50(2):435-444. doi: 10.1021/acs.accounts.6b00541. Epub 2017 Feb 1.

Abstract

Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the electron-deficient B-doped sp carbon. The combined experimental and theoretical study indicated the ORR activity originated from the activation of carbon π electrons by breaking the integrity of π conjugation, despite the electron-rich or electron-deficient nature of the dopants. With this understanding, metal-free electrocatalysts were further extended to the dopant-free defective carbon nanomaterials. Moreover, we developed novel 3D hierarchical carbon-based nanocages by the in situ MgO template method, which featured coexisting micro-meso-macropores and much larger SSA than the nanotubes. The unique 3D architecture avoids the restacking generally faced by 2D graphene due to the intrinsic π-π interaction. Consequently, the hierarchical nanocages presented superior performances not only as new catalyst supports and metal-free electrocatalysts but also as electrode materials for energy storage. State-of-the-art supercapacitive performances were achieved with high energy density and power density, as well as excellent rate capability and cycling stability. The large interior space of the nanocages enabled the encapsulation of high-loading sulfur to alleviate polysulfide dissolution while greatly enhancing the electron conduction and Li-ion diffusion, leading to top level performance of lithium-sulfur battery. These results not only provide unique carbon-based nanomaterials but also lead to in-depth understanding of growth mechanisms, material design, and structure-performance relationships, which is significant to promote their energy applications and also to enrich the exciting field of carbon-based nanomaterials.

摘要

由于其丰富的微观结构和形态、优异的性能以及广泛的潜在应用,碳基纳米材料成为过去 30 年研究的焦点,其中包括 0D 富勒烯、1D 纳米管和 2D 石墨烯等标志性材料。碳基纳米材料具有高比表面积(SSA)、平衡的孔分布、高导电性和可调节润湿性,有望成为用于能量转换和存储的先进材料,以满足对清洁和可再生能源日益增长的需求。在这种情况下,近年来,人们通常会关注石墨烯这一明星材料。在本专题中,我们综述了我们在碳基纳米管到纳米笼用于能量转换和存储方面的研究工作,包括它们的合成、性能和相关机制。这两种碳纳米结构具有内腔、高导电性和易于掺杂的共同特点,但 SSA 和孔分布差异很大,导致性能不同。我们基于苯环与 CNTs 构建单元的结构相似性,提出了以苯为前体的 CNTs 的六元环基生长机制。通过这种机制,以吡啶为前体得到了具有均匀 N 分布和主要吡啶 N 的氮掺杂 CNTs(NCNTs),为通过 N 参与进行方便的表面功能化提供了一种新的支持。因此,各种过渡金属纳米颗粒可以直接固定在 NCNTs 上,而无需预先修饰。所构建的催化剂具有高分散性、窄的尺寸分布和可调的组成,在能量转换方面表现出优异的催化性能,例如在燃料电池中的氧还原反应(ORR)和甲醇氧化。随着碳基无金属电催化剂这一新领域的出现,我们首先将 ORR 催化剂从富电子的 N 掺杂扩展到缺电子的 B 掺杂 sp 碳。结合实验和理论研究表明,ORR 活性源于通过破坏π共轭的完整性来激活碳π电子,尽管掺杂剂具有富电子或缺电子性质。基于这种理解,无金属电催化剂进一步扩展到无掺杂缺陷碳纳米材料。此外,我们通过原位 MgO 模板法开发了新型 3D 分级碳基纳米笼,其特征是共存的微介宏观孔和比纳米管更大的 SSA。独特的 3D 结构避免了由于固有π-π相互作用而通常面临的 2D 石墨烯的堆积。因此,分层纳米笼不仅作为新型催化剂载体和无金属电催化剂,而且作为储能电极材料,表现出优异的性能。具有高能量密度和功率密度以及出色的倍率性能和循环稳定性,实现了最先进的超级电容器性能。纳米笼的大内部空间能够封装高负载量的硫,以减轻多硫化物的溶解,同时大大提高电子传导和锂离子扩散,从而实现锂硫电池的顶级性能。这些结果不仅提供了独特的碳基纳米材料,而且深入了解了生长机制、材料设计和结构-性能关系,这对于推动它们在能源方面的应用以及丰富令人兴奋的碳基纳米材料领域具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验