Suppr超能文献

具有长程相互作用的系统中的混沌与向平衡态的弛豫

Chaos and relaxation to equilibrium in systems with long-range interactions.

作者信息

Antunes Felipe L, Benetti Fernanda P C, Pakter Renato, Levin Yan

机构信息

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052123. doi: 10.1103/PhysRevE.92.052123. Epub 2015 Nov 17.

Abstract

In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become trapped in nonequilibrium stationary states. For a finite number of particles a nonequilibrium state has a finite lifetime, so that eventually a system will relax to thermodynamic equilibrium. The time that a system remains trapped in a quasistationary state (QSS) scales with the number of particles as N(δ), with δ>0, and diverges in the thermodynamic limit. In this paper we will explore the role of chaotic dynamics on the time that a system remains trapped in a QSS. We discover that chaos, measured by the Lyapunov exponents, favors faster relaxation to equilibrium. Surprisingly, weak chaos favors faster relaxation than strong chaos.

摘要

在热力学极限下,具有长程相互作用的系统不会弛豫到平衡态,而是会被困在非平衡稳态中。对于有限数量的粒子,非平衡态具有有限的寿命,因此最终系统会弛豫到热力学平衡态。系统被困在准稳态(QSS)的时间随粒子数按N(δ) 缩放,其中δ>0,并且在热力学极限下发散。在本文中,我们将探讨混沌动力学在系统被困在QSS的时间上所起的作用。我们发现,用李雅普诺夫指数衡量的混沌有利于更快地弛豫到平衡态。令人惊讶的是,弱混沌比强混沌更有利于更快地弛豫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验