Suppr超能文献

受扰长程相互作用系统中的吸引子非平衡定态

Attractor nonequilibrium stationary states in perturbed long-range interacting systems.

作者信息

Joyce Michael, Morand Jules, Viot Pascal

机构信息

Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC IN2P3 CNRS UMR 7585, Sorbonne Universités, 4, place Jussieu, 75252 Paris Cedex 05, France.

National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.

出版信息

Phys Rev E. 2016 May;93(5):052129. doi: 10.1103/PhysRevE.93.052129. Epub 2016 May 16.

Abstract

Isolated long-range interacting particle systems appear generically to relax to nonequilibrium states ("quasistationary states" or QSSs) which are stationary in the thermodynamic limit. A fundamental open question concerns the "robustness" of these states when the system is not isolated. In this paper we explore, using both analytical and numerical approaches to a paradigmatic one-dimensional model, the effect of a simple class of perturbations. We call them "internal local perturbations" in that the particle energies are perturbed at collisions in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to drive all the very different QSSs we consider towards a unique QSS. The latter is thus independent of the initial conditions of the system, but determined instead by both the long-range forces and the details of the perturbations applied. Thus in the presence of such a perturbation the long-range system evolves to a unique nonequilibrium stationary state, completely different from its state in absence of the perturbation, and it remains in this state when the perturbation is removed. We argue that this result may be generic for long-range interacting systems subject to perturbations which are dependent on the local properties (e.g., spatial density or velocity distribution) of the system itself.

摘要

孤立的长程相互作用粒子系统通常会弛豫到非平衡态(“准稳态”或QSS),这些态在热力学极限下是稳定的。一个基本的开放性问题涉及当系统不孤立时这些态的“稳健性”。在本文中,我们使用解析和数值方法研究一个典型的一维模型,探讨一类简单微扰的影响。我们称它们为“内部局部微扰”,因为粒子能量在碰撞时受到微扰,其方式仅取决于局部性质。我们的核心发现是,微扰的作用是将我们考虑的所有非常不同的QSS驱动到一个唯一的QSS。因此,后者与系统的初始条件无关,而是由长程力和所施加微扰的细节共同决定。因此,在存在这种微扰的情况下,长程系统会演化为一个唯一的非平衡稳态,与不存在微扰时的状态完全不同,并且在微扰去除后仍保持在该状态。我们认为,对于受到依赖于系统自身局部性质(例如空间密度或速度分布)的微扰的长程相互作用系统,这一结果可能是普遍的。

相似文献

1
Attractor nonequilibrium stationary states in perturbed long-range interacting systems.
Phys Rev E. 2016 May;93(5):052129. doi: 10.1103/PhysRevE.93.052129. Epub 2016 May 16.
2
Linear response theory for long-range interacting systems in quasistationary states.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021133. doi: 10.1103/PhysRevE.85.021133. Epub 2012 Feb 23.
3
Chaos and relaxation to equilibrium in systems with long-range interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052123. doi: 10.1103/PhysRevE.92.052123. Epub 2015 Nov 17.
4
Temperature inversion in long-range interacting systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):020101. doi: 10.1103/PhysRevE.92.020101. Epub 2015 Aug 3.
5
Collisional relaxation of two-dimensional self-gravitating systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032112. doi: 10.1103/PhysRevE.88.032112. Epub 2013 Sep 9.
6
Slow relaxation in long-range interacting systems with stochastic dynamics.
Phys Rev Lett. 2010 Jul 23;105(4):040602. doi: 10.1103/PhysRevLett.105.040602.
7
Dynamics and physical interpretation of quasistationary states in systems with long-range interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032116. doi: 10.1103/PhysRevE.89.032116. Epub 2014 Mar 13.
8
Generalized maximum entropy approach to quasistationary states in long-range systems.
Phys Rev E. 2016 Feb;93(2):022107. doi: 10.1103/PhysRevE.93.022107. Epub 2016 Feb 4.
9
Core-halo distribution in the Hamiltonian mean-field model.
Phys Rev Lett. 2011 May 20;106(20):200603. doi: 10.1103/PhysRevLett.106.200603.
10
Quasistationarity in a model of long-range interacting particles moving on a sphere.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052137. doi: 10.1103/PhysRevE.88.052137. Epub 2013 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验