Joyce Michael, Morand Jules, Viot Pascal
Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC IN2P3 CNRS UMR 7585, Sorbonne Universités, 4, place Jussieu, 75252 Paris Cedex 05, France.
National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.
Phys Rev E. 2016 May;93(5):052129. doi: 10.1103/PhysRevE.93.052129. Epub 2016 May 16.
Isolated long-range interacting particle systems appear generically to relax to nonequilibrium states ("quasistationary states" or QSSs) which are stationary in the thermodynamic limit. A fundamental open question concerns the "robustness" of these states when the system is not isolated. In this paper we explore, using both analytical and numerical approaches to a paradigmatic one-dimensional model, the effect of a simple class of perturbations. We call them "internal local perturbations" in that the particle energies are perturbed at collisions in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to drive all the very different QSSs we consider towards a unique QSS. The latter is thus independent of the initial conditions of the system, but determined instead by both the long-range forces and the details of the perturbations applied. Thus in the presence of such a perturbation the long-range system evolves to a unique nonequilibrium stationary state, completely different from its state in absence of the perturbation, and it remains in this state when the perturbation is removed. We argue that this result may be generic for long-range interacting systems subject to perturbations which are dependent on the local properties (e.g., spatial density or velocity distribution) of the system itself.
孤立的长程相互作用粒子系统通常会弛豫到非平衡态(“准稳态”或QSS),这些态在热力学极限下是稳定的。一个基本的开放性问题涉及当系统不孤立时这些态的“稳健性”。在本文中,我们使用解析和数值方法研究一个典型的一维模型,探讨一类简单微扰的影响。我们称它们为“内部局部微扰”,因为粒子能量在碰撞时受到微扰,其方式仅取决于局部性质。我们的核心发现是,微扰的作用是将我们考虑的所有非常不同的QSS驱动到一个唯一的QSS。因此,后者与系统的初始条件无关,而是由长程力和所施加微扰的细节共同决定。因此,在存在这种微扰的情况下,长程系统会演化为一个唯一的非平衡稳态,与不存在微扰时的状态完全不同,并且在微扰去除后仍保持在该状态。我们认为,对于受到依赖于系统自身局部性质(例如空间密度或速度分布)的微扰的长程相互作用系统,这一结果可能是普遍的。