Suppr超能文献

通过通道阻滞抑制细菌毒素

Inhibiting bacterial toxins by channel blockage.

作者信息

Bezrukov Sergey M, Nestorovich Ekaterina M

机构信息

Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Department of Biology, The Catholic University of America, Washington, DC 20064, USA

出版信息

Pathog Dis. 2016 Mar;74(2). doi: 10.1093/femspd/ftv113. Epub 2015 Dec 9.

Abstract

Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.

摘要

新兴的合理药物设计技术探索目标生物分子、小分子和大分子候选药物的个体特性,以及控制它们相互作用的物理力。在这篇微型综述中,我们重点关注形成通道的细菌毒素的单分子生物物理研究,这些研究为其抑制提供了新方法。我们讨论了定制化合物阻断细菌成孔毒素和AB型毒素的几个例子。在结论部分,将最有效的合理设计的孔阻断抗毒素与神经生理学中离子选择性通道的小分子抑制剂进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e93/4830228/c019ee88baa3/ftv113fig1g.jpg

相似文献

1
Inhibiting bacterial toxins by channel blockage.
Pathog Dis. 2016 Mar;74(2). doi: 10.1093/femspd/ftv113. Epub 2015 Dec 9.
2
Obstructing toxin pathways by targeted pore blockage.
Chem Rev. 2012 Dec 12;112(12):6388-430. doi: 10.1021/cr300141q. Epub 2012 Oct 11.
3
Structure-activity relationship studies of a novel series of anthrax lethal factor inhibitors.
Bioorg Med Chem. 2009 May 1;17(9):3352-68. doi: 10.1016/j.bmc.2009.03.040. Epub 2009 Mar 26.
4
Multivalent Inhibitors of Channel-Forming Bacterial Toxins.
Curr Top Microbiol Immunol. 2017;406:199-227. doi: 10.1007/82_2016_20.
5
Structure-function analysis of VapB4 antitoxin identifies critical features of a minimal VapC4 toxin-binding module.
J Bacteriol. 2015 Apr;197(7):1197-207. doi: 10.1128/JB.02508-14. Epub 2015 Jan 26.
6
Designing inhibitors of anthrax toxin.
Expert Opin Drug Discov. 2014 Mar;9(3):299-318. doi: 10.1517/17460441.2014.877884. Epub 2014 Jan 22.
8
Inhibitors of anthrax lethal factor based upon N-oleoyldopamine.
Bioorg Med Chem Lett. 2008 Apr 1;18(7):2467-70. doi: 10.1016/j.bmcl.2008.02.044. Epub 2008 Feb 20.
10
Antitoxins: novel strategies to target agents of bioterrorism.
Nat Rev Microbiol. 2004 Sep;2(9):721-6. doi: 10.1038/nrmicro977.

引用本文的文献

1
Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation.
Acta Pharm Sin B. 2022 Nov;12(11):4235-4248. doi: 10.1016/j.apsb.2022.03.015. Epub 2022 Mar 29.
2
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin.
Membranes (Basel). 2021 May 18;11(5):364. doi: 10.3390/membranes11050364.
3
A Monoclonal Antibody against the C-Terminal Domain of Hemolysin II Inhibits HlyII Cytolytic Activity.
Toxins (Basel). 2020 Dec 19;12(12):806. doi: 10.3390/toxins12120806.
4
Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel.
Biophys J. 2019 Nov 5;117(9):1751-1763. doi: 10.1016/j.bpj.2019.08.041. Epub 2019 Sep 12.
5
Inhibition of Pore-Forming Proteins.
Toxins (Basel). 2019 Sep 19;11(9):545. doi: 10.3390/toxins11090545.

本文引用的文献

1
Analytical applications for pore-forming proteins.
Biochim Biophys Acta. 2016 Mar;1858(3):593-606. doi: 10.1016/j.bbamem.2015.09.023. Epub 2015 Oct 22.
2
Role of the α Clamp in the Protein Translocation Mechanism of Anthrax Toxin.
J Mol Biol. 2015 Oct 9;427(20):3340-3349. doi: 10.1016/j.jmb.2015.08.024. Epub 2015 Sep 5.
3
On the applicability of entropy potentials in transport problems.
Eur Phys J Spec Top. 2014 Dec;223(14):3063-3077. doi: 10.1140/epjst/e2014-02319-3.
4
Pore-forming activity of clostridial binary toxins.
Biochim Biophys Acta. 2016 Mar;1858(3):512-25. doi: 10.1016/j.bbamem.2015.08.006. Epub 2015 Aug 14.
5
Anthrax Pathogenesis.
Annu Rev Microbiol. 2015;69:185-208. doi: 10.1146/annurev-micro-091014-104523. Epub 2015 Jul 16.
6
Viroporins: structure, function and potential as antiviral targets.
J Gen Virol. 2015 Aug;96(8):2000-2027. doi: 10.1099/vir.0.000201. Epub 2015 May 28.
7
Atomic structure of anthrax protective antigen pore elucidates toxin translocation.
Nature. 2015 May 28;521(7553):545-9. doi: 10.1038/nature14247. Epub 2015 Mar 16.
8
Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin.
Cell Microbiol. 2015 Feb;17(2):288-302. doi: 10.1111/cmi.12366. Epub 2014 Nov 19.
9
Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known.
Anaerobe. 2014 Dec;30:102-7. doi: 10.1016/j.anaerobe.2014.08.016. Epub 2014 Sep 16.
10
Channel-forming bacterial toxins in biosensing and macromolecule delivery.
Toxins (Basel). 2014 Aug 21;6(8):2483-540. doi: 10.3390/toxins6082483.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验