Buder Thomas, Deutsch Andreas, Klink Barbara, Voss-Böhme Anja
Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Technische Universität Dresden, Dresden, Germany.
Fakultät Informatik / Mathematik, Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany.
PLoS Comput Biol. 2015 Dec 10;11(12):e1004662. doi: 10.1371/journal.pcbi.1004662. eCollection 2015 Dec.
Pilocytic astrocytoma (PA) is the most common brain tumor in children. This tumor is usually benign and has a good prognosis. Total resection is the treatment of choice and will cure the majority of patients. However, often only partial resection is possible due to the location of the tumor. In that case, spontaneous regression, regrowth, or progression to a more aggressive form have been observed. The dependency between the residual tumor size and spontaneous regression is not understood yet. Therefore, the prognosis is largely unpredictable and there is controversy regarding the management of patients for whom complete resection cannot be achieved. Strategies span from pure observation (wait and see) to combinations of surgery, adjuvant chemotherapy, and radiotherapy. Here, we introduce a mathematical model to investigate the growth and progression behavior of PA. In particular, we propose a Markov chain model incorporating cell proliferation and death as well as mutations. Our model analysis shows that the tumor behavior after partial resection is essentially determined by a risk coefficient γ, which can be deduced from epidemiological data about PA. Our results quantitatively predict the regression probability of a partially resected benign PA given the residual tumor size and lead to the hypothesis that this dependency is linear, implying that removing any amount of tumor mass will improve prognosis. This finding stands in contrast to diffuse malignant glioma where an extent of resection threshold has been experimentally shown, below which no benefit for survival is expected. These results have important implications for future therapeutic studies in PA that should include residual tumor volume as a prognostic factor.
毛细胞型星形细胞瘤(PA)是儿童最常见的脑肿瘤。这种肿瘤通常为良性,预后良好。手术全切是首选治疗方法,大多数患者可因此治愈。然而,由于肿瘤位置的原因,通常只能进行部分切除。在这种情况下,已观察到肿瘤会自发消退、复发或进展为更具侵袭性的形式。目前尚不清楚残余肿瘤大小与自发消退之间的关系。因此,预后在很大程度上不可预测,对于无法实现全切的患者的治疗管理也存在争议。治疗策略从单纯观察(等待观望)到手术、辅助化疗和放疗的联合应用。在此,我们引入一个数学模型来研究PA的生长和进展行为。特别是,我们提出了一个包含细胞增殖、死亡以及突变的马尔可夫链模型。我们的模型分析表明,部分切除后肿瘤的行为基本上由风险系数γ决定,γ可从关于PA的流行病学数据中推导得出。我们的结果定量预测了给定残余肿瘤大小的部分切除良性PA的消退概率,并得出这种关系是线性的假设,这意味着切除任何数量的肿瘤都会改善预后。这一发现与弥漫性恶性胶质瘤形成对比,在弥漫性恶性胶质瘤中,已通过实验证明存在一个切除范围阈值,低于该阈值预计对生存无益处。这些结果对PA未来的治疗研究具有重要意义,未来的治疗研究应将残余肿瘤体积作为一个预后因素。