Kronen Miriam, Berg Ivan A
Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
PLoS One. 2015 Dec 14;10(12):e0145098. doi: 10.1371/journal.pone.0145098. eCollection 2015.
Mesaconase catalyzes the hydration of mesaconate (methylfumarate) to (S)-citramalate. The enzyme participates in the methylaspartate pathway of glutamate fermentation as well as in the metabolism of various C5-dicarboxylic acids such as mesaconate or L-threo-β-methylmalate. We have recently shown that Burkholderia xenovorans uses a promiscuous class I fumarase to catalyze this reaction in the course of mesaconate utilization. Here we show that classical Escherichia coli class I fumarases A and B (FumA and FumB) are capable of hydrating mesaconate with 4% (FumA) and 19% (FumB) of the catalytic efficiency kcat/Km, compared to the physiological substrate fumarate. Furthermore, the genomes of 14.8% of sequenced Enterobacteriaceae (26.5% of E. coli, 90.6% of E. coli O157:H7 strains) possess an additional class I fumarase homologue which we designated as fumarase D (FumD). All these organisms are (opportunistic) pathogens. fumD is clustered with the key genes for two enzymes of the methylaspartate pathway of glutamate fermentation, glutamate mutase and methylaspartate ammonia lyase, converting glutamate to mesaconate. Heterologously produced FumD was a promiscuous mesaconase/fumarase with a 2- to 3-fold preference for mesaconate over fumarate. Therefore, these bacteria have the genetic potential to convert glutamate to (S)-citramalate, but the further fate of citramalate is still unclear. Our bioinformatic analysis identified several other putative mesaconase genes and revealed that mesaconases probably evolved several times from various class I fumarases independently. Most, if not all iron-dependent fumarases, are capable to catalyze mesaconate hydration.
甲基aconase催化甲基aconate(甲基富马酸)水合生成(S)-柠苹酸。该酶参与谷氨酸发酵的甲基天冬氨酸途径以及各种C5-二羧酸(如甲基aconate或L-苏式-β-甲基苹果酸)的代谢。我们最近发现,嗜麦芽窄食单胞菌在利用甲基aconate的过程中使用一种混杂的I类富马酸酶来催化此反应。在此我们表明,经典的大肠杆菌I类富马酸酶A和B(FumA和FumB)能够将甲基aconate水合,与生理底物富马酸相比,催化效率kcat/Km分别为4%(FumA)和19%(FumB)。此外,14.8%的已测序肠杆菌科细菌基因组(26.5%的大肠杆菌、90.6%的大肠杆菌O157:H7菌株)拥有一个额外的I类富马酸酶同源物,我们将其命名为富马酸酶D(FumD)。所有这些生物都是(机会性)病原体。fumD与谷氨酸发酵的甲基天冬氨酸途径中两种酶(谷氨酸变位酶和甲基天冬氨酸氨裂合酶)的关键基因聚集在一起,将谷氨酸转化为甲基aconate。异源产生的FumD是一种混杂的甲基aconase/富马酸酶,对甲基aconate的偏好比对富马酸高2至3倍。因此,这些细菌具有将谷氨酸转化为(S)-柠苹酸的遗传潜力,但柠苹酸的进一步去向仍不清楚。我们的生物信息学分析鉴定出了其他几个假定的甲基aconase基因,并揭示甲基aconase可能从各种I类富马酸酶独立进化了几次。大多数(如果不是全部)铁依赖性富马酸酶都能够催化甲基aconate水合。