Suppr超能文献

IGF1信号通路的激活介导了单缝颅缝早闭中细胞收缩性和运动性的变化。

Activation of the IGF1 pathway mediates changes in cellular contractility and motility in single-suture craniosynostosis.

作者信息

Al-Rekabi Zeinab, Wheeler Marsha M, Leonard Andrea, Fura Adriane M, Juhlin Ilsa, Frazar Christopher, Smith Joshua D, Park Sarah S, Gustafson Jennifer A, Clarke Christine M, Cunningham Michael L, Sniadecki Nathan J

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA.

Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.

出版信息

J Cell Sci. 2016 Feb 1;129(3):483-91. doi: 10.1242/jcs.175976. Epub 2015 Dec 11.

Abstract

Insulin growth factor 1 (IGF1) is a major anabolic signal that is essential during skeletal development, cellular adhesion and migration. Recent transcriptomic studies have shown that there is an upregulation in IGF1 expression in calvarial osteoblasts derived from patients with single-suture craniosynostosis (SSC). Upregulation of the IGF1 signaling pathway is known to induce increased expression of a set of osteogenic markers that previously have been shown to be correlated with contractility and migration. Although the IGF1 signaling pathway has been implicated in SSC, a correlation between IGF1, contractility and migration has not yet been investigated. Here, we examined the effect of IGF1 activation in inducing cellular contractility and migration in SSC osteoblasts using micropost arrays and time-lapse microscopy. We observed that the contractile forces and migration speeds of SSC osteoblasts correlated with IGF1 expression. Moreover, both contractility and migration of SSC osteoblasts were directly affected by the interaction of IGF1 with IGF1 receptor (IGF1R). Our results suggest that IGF1 activity can provide valuable insight for phenotype-genotype correlation in SSC osteoblasts and might provide a target for therapeutic intervention.

摘要

胰岛素样生长因子1(IGF1)是一种主要的合成代谢信号,在骨骼发育、细胞黏附和迁移过程中至关重要。最近的转录组学研究表明,单缝颅缝早闭(SSC)患者来源的颅骨成骨细胞中IGF1表达上调。已知IGF1信号通路的上调会诱导一组成骨标志物的表达增加,这些标志物先前已被证明与细胞收缩性和迁移有关。尽管IGF1信号通路与SSC有关,但IGF1、收缩性和迁移之间的相关性尚未得到研究。在此,我们使用微柱阵列和延时显微镜检查了IGF1激活对SSC成骨细胞诱导细胞收缩性和迁移的影响。我们观察到SSC成骨细胞的收缩力和迁移速度与IGF1表达相关。此外,IGF1与胰岛素样生长因子1受体(IGF1R)的相互作用直接影响了SSC成骨细胞的收缩性和迁移。我们的结果表明,IGF1活性可为SSC成骨细胞的表型-基因型相关性提供有价值的见解,并可能为治疗干预提供靶点。

相似文献

1
2
Regulation of Ligand and Shear Stress-induced Insulin-like Growth Factor 1 (IGF1) Signaling by the Integrin Pathway.
J Biol Chem. 2016 Apr 8;291(15):8140-9. doi: 10.1074/jbc.M115.693598. Epub 2016 Feb 10.
3
Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model.
PLoS One. 2019 Aug 23;14(8):e0221402. doi: 10.1371/journal.pone.0221402. eCollection 2019.
5
Crosstalk between insulin-like growth factor (IGF) receptor and integrins through direct integrin binding to IGF1.
Cytokine Growth Factor Rev. 2017 Apr;34:67-72. doi: 10.1016/j.cytogfr.2017.01.003. Epub 2017 Feb 3.
6
The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities.
Int J Mol Sci. 2023 Oct 4;24(19):14882. doi: 10.3390/ijms241914882.
8
Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation.
FASEB J. 2015 Jun;29(6):2555-65. doi: 10.1096/fj.14-258970. Epub 2015 Mar 6.
9
Signaling by insulin-like growth factor 1 in brain.
Eur J Pharmacol. 2004 Apr 19;490(1-3):25-31. doi: 10.1016/j.ejphar.2004.02.042.

引用本文的文献

2
The value of genome-wide analysis in craniosynostosis.
Front Genet. 2024 Jan 22;14:1322462. doi: 10.3389/fgene.2023.1322462. eCollection 2023.
3
Transcriptional Regulation of Structural and Functional Adaptations in a Developing Adulthood Myocardium.
Cardiol Cardiovasc Med. 2021;5(5):454-470. doi: 10.26502/fccm.92920215. Epub 2021 Sep 7.
4
IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis.
JCI Insight. 2021 Mar 22;6(6):144863. doi: 10.1172/jci.insight.144863.
6
7
(De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures.
Adv Healthc Mater. 2020 Apr;9(8):e1901454. doi: 10.1002/adhm.201901454. Epub 2020 Jan 17.
8
Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model.
PLoS One. 2019 Aug 23;14(8):e0221402. doi: 10.1371/journal.pone.0221402. eCollection 2019.
9
Cell Mechanics of Craniosynostosis.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2733-2743. doi: 10.1021/acsbiomaterials.6b00557. Epub 2016 Dec 14.
10
Genetic Causes of Craniosynostosis: An Update.
Mol Syndromol. 2019 Feb;10(1-2):6-23. doi: 10.1159/000492266. Epub 2018 Aug 15.

本文引用的文献

1
A Genetic-Pathophysiological Framework for Craniosynostosis.
Am J Hum Genet. 2015 Sep 3;97(3):359-77. doi: 10.1016/j.ajhg.2015.07.006.
2
Osteoblast differentiation profiles define sex specific gene expression patterns in craniosynostosis.
Bone. 2015 Jul;76:169-76. doi: 10.1016/j.bone.2015.03.001. Epub 2015 Mar 7.
3
Craniosynostosis and risk factors related to thyroid dysfunction.
Am J Med Genet A. 2015 Apr;167A(4):701-7. doi: 10.1002/ajmg.a.36953. Epub 2015 Feb 5.
4
Three-dimensionally printed biological machines powered by skeletal muscle.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10125-30. doi: 10.1073/pnas.1401577111. Epub 2014 Jun 30.
5
Tight coupling between nucleus and cell migration through the perinuclear actin cap.
J Cell Sci. 2014 Jun 1;127(Pt 11):2528-41. doi: 10.1242/jcs.144345. Epub 2014 Mar 17.
6
IGF-1 regulation of key signaling pathways in bone.
Bonekey Rep. 2013 Oct 2;2:437. doi: 10.1038/bonekey.2013.171.
7
Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.
Phys Biol. 2013 Dec;10(6):066003. doi: 10.1088/1478-3975/10/6/066003. Epub 2013 Oct 29.
10
To Wnt or not to Wnt: the bone and joint health dilemma.
Nat Rev Rheumatol. 2013 Jun;9(6):328-39. doi: 10.1038/nrrheum.2013.25. Epub 2013 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验