Suppr超能文献

基于骨骼肌驱动的三维打印生物机器

Three-dimensionally printed biological machines powered by skeletal muscle.

机构信息

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801;Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10125-30. doi: 10.1073/pnas.1401577111. Epub 2014 Jun 30.

Abstract

Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.

摘要

将生物成分(如细胞和组织)与软机器人相结合,可以制造出能够感知、处理信号和产生力的生物机器。生物机器的直观演示是能够对外界可控信号做出响应并产生运动的机器。虽然已经展示了由心肌细胞驱动的生物执行器,但这些机器对刺激做出响应并表现出受控运动的要求使得需要使用骨骼肌作为可收缩的动力源,骨骼肌是动物产生运动的主要来源。在这里,我们报告了 3D 打印水凝胶“生物机器人”的开发,这些生物机器人具有不对称的物理设计,并由工程化的哺乳动物骨骼肌条的驱动来实现生物机器人的净运动。使用立体光刻 3D 打印优化了水凝胶生物机器人的几何设计和材料特性,并表征了胶原蛋白 I 和纤维蛋白细胞外基质蛋白以及胰岛素样生长因子 1 对工程化骨骼肌产生力的影响。电刺激引发肌肉条中细胞的收缩和生物机器人的净运动,最大速度约为 156 μm s(-1),每分钟超过 1.5 个体长。建模和模拟用于理解不同设计参数对生物机器人的影响和运动机制。这一演示推进了实现正向设计的集成细胞机器和系统的目标,这些机器和系统在药物筛选、可编程组织工程、药物输送和仿生机器设计等方面具有广泛的应用前景。

相似文献

1
Three-dimensionally printed biological machines powered by skeletal muscle.基于骨骼肌驱动的三维打印生物机器
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10125-30. doi: 10.1073/pnas.1401577111. Epub 2014 Jun 30.
2
Optogenetic skeletal muscle-powered adaptive biological machines.光遗传学骨骼肌驱动的自适应生物机器。
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3497-502. doi: 10.1073/pnas.1516139113. Epub 2016 Mar 14.
4
Development of miniaturized walking biological machines.微型行走生物机器的研制。
Sci Rep. 2012;2:857. doi: 10.1038/srep00857. Epub 2012 Nov 15.
6
Neuromuscular actuation of biohybrid motile bots.生物混合能动机器人的神经肌肉驱动。
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19841-19847. doi: 10.1073/pnas.1907051116. Epub 2019 Sep 16.
10
3D Printed Electrically-Driven Soft Actuators.3D打印电动软致动器
Extreme Mech Lett. 2018 May;21:1-8. doi: 10.1016/j.eml.2018.02.002. Epub 2018 Feb 23.

引用本文的文献

1
Modal analysis and optimization of swimming active filaments.游泳活性细丝的模态分析与优化
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240256. doi: 10.1098/rsta.2024.0256.
5
Technology Roadmap of Micro/Nanorobots.微纳机器人技术路线图
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
9
3D-Printable Elastomers for Real-Time Autonomous Self-Healing in Soft Devices.用于软设备实时自主自愈的3D可打印弹性体。
ACS Mater Lett. 2024 Dec 3;7(1):123-132. doi: 10.1021/acsmaterialslett.4c01358. eCollection 2025 Jan 6.

本文引用的文献

4
Development of a sperm-flagella driven micro-bio-robot.精子鞭毛驱动的微型生物机器人的研制。
Adv Mater. 2013 Dec 3;25(45):6581-8. doi: 10.1002/adma.201302544. Epub 2013 Sep 1.
6
Development of miniaturized walking biological machines.微型行走生物机器的研制。
Sci Rep. 2012;2:857. doi: 10.1038/srep00857. Epub 2012 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验