Suppr超能文献

微小RNA表达谱分析:技术、见解与前景

microRNA Expression Profiling: Technologies, Insights, and Prospects.

作者信息

Roden Christine, Mastriano Stephen, Wang Nayi, Lu Jun

机构信息

Department of Genetics, Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, 10 Amistad Street, Rm 237C, New Haven, CT, 06520-8005, USA.

The Biomedical Engineering Graduate Program, New Haven, CT, 06520, USA.

出版信息

Adv Exp Med Biol. 2015;888:409-21. doi: 10.1007/978-3-319-22671-2_21.

Abstract

Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

摘要

自微小RNA(miRNA)研究早期以来,miRNA表达谱技术为更好地理解miRNA的生物学功能以及将miRNA表达用作潜在诊断手段提供了重要工具。多种技术,如微阵列、下一代测序、基于微珠的检测系统、单分子测量和定量逆转录聚合酶链反应,已能够对miRNA进行准确量化,并随后获得对各种生物过程的关键见解。作为一类长度约为22个核苷酸的小非编码RNA,miRNA在表达谱分析中存在独特的挑战,需要仔细的实验设计和数据分析。我们将特别讨论标准化以及miRNA异构体的存在如何影响数据解释。我们将展示一个例子,其中对数据标准化的考虑提供了有助于将全局miRNA表达确立为肿瘤抑制因子的见解。最后,我们讨论使用miRNA谱技术来理解单细胞变异性并推导miRNA异构体功能新规则的两个未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验