Suppr超能文献

用于在空气中高效溶液处理有机太阳能电池的高性能聚咔唑衍生物。

High-Performing Polycarbazole Derivatives for Efficient Solution-Processing of Organic Solar Cells in Air.

作者信息

Burgués-Ceballos Ignasi, Hermerschmidt Felix, Akkuratov Alexander V, Susarova Diana K, Troshin Pavel A, Choulis Stelios A

机构信息

Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol, 3041 Cyprus.

Institute for Problems of Chemical Physics, Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow region, 142432, Russia.

出版信息

ChemSusChem. 2015 Dec 21;8(24):4209-15. doi: 10.1002/cssc.201501128. Epub 2015 Dec 10.

Abstract

The application of conjugated materials in organic photovoltaics (OPVs) is usually demonstrated in lab-scale spin-coated devices that are processed under controlled inert conditions. Although this is a necessary step to prove high efficiency, testing of promising materials in air should be done in the early stages of research to validate their real potential for low-cost, solution-processed, and large-scale OPVs. Also relevant for approaching commercialization needs is the use of printing techniques that are compatible with upscaling. Here, solution processing of organic solar cells based on three new poly(2,7-carbazole) derivatives is efficiently transferred, without significant losses, to air conditions and to several deposition methods using a simple device architecture. High efficiencies in the range between 5.0 % and 6.3 % are obtained in (rigid) spin-coated, doctor-bladed, and (flexible) slot-die-coated devices, which surpass the reference devices based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). In contrast, inkjet printing does not provide reliable results with the presented polymers, which is attributed to their high molecular weight. When the device area in the best-performing system is increased from 9 mm(2) to 0.7 cm(2), the efficiency drops from 6.2 % to 5.0 %. Photocurrent mapping reveals inhomogeneous current generation derived from changes in the thickness of the active layer.

摘要

共轭材料在有机光伏器件(OPV)中的应用通常是在实验室规模的旋涂器件中进行展示的,这些器件是在可控的惰性条件下加工而成。尽管这是证明高效率的必要步骤,但在研究的早期阶段就应该在空气中对有前景的材料进行测试,以验证它们在低成本、溶液加工和大规模OPV方面的实际潜力。与满足商业化需求相关的还有使用与扩大规模兼容的印刷技术。在此,基于三种新型聚(2,7 -咔唑)衍生物的有机太阳能电池的溶液加工能够高效地转移到空气条件下,并使用简单的器件结构转移到几种沉积方法中。在(刚性)旋涂、刮刀涂布和(柔性)狭缝模头涂布器件中获得了5.0%至6.3%的高效率,超过了基于聚[N - 9'-十七烷基 - 2,7 -咔唑 - alt - 5,5 -(4',7'-二 - 2 -噻吩基 - 2',1',3'-苯并噻二唑)](PCDTBT)的参考器件。相比之下,喷墨印刷对于所展示的聚合物不能提供可靠的结果,这归因于它们的高分子量。当性能最佳的系统中的器件面积从9平方毫米增加到0.7平方厘米时,效率从6.2%下降到5.0%。光电流映射揭示了由于活性层厚度变化而导致电流产生不均匀的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验