Geier Martina, Brandner Christoph, Strohmeier Gernot A, Hall Mélanie, Hartner Franz S, Glieder Anton
Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, Graz, 8010, Austria.
Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, Graz, 8010, Austria ; Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
Beilstein J Org Chem. 2015 Sep 25;11:1741-8. doi: 10.3762/bjoc.11.190. eCollection 2015.
Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy.
许多具有合成用途的反应由依赖辅因子的酶催化。由于辅因子是主要的成本因素,因此尤其对于大规模合成应用而言,需要高效的辅因子再生方法。为了构建一种用于生物还原的新型高效宿主底盘,我们对毕赤酵母的甲醇利用途径进行了工程改造,以改善NADH的再生。通过删除编码二羟基丙酮合酶同工型1和2(DAS1和DAS2)的基因,经由甲醇氧化(异化作用)的NADH再生显著增加。所得的Δdas1 Δdas2菌株在基于丁二醇脱氢酶(BDH1)的全细胞转化中表现更佳。当在野生型菌株中进行时,BDH1催化的乙偶姻还原在2小时后停止,底物转化率达到约50%,而使用敲除菌株在6小时后可实现完全转化。这些结果表明,毕赤酵母Δdas1 Δdas2菌株能够在较长的反应时间内为实际的生物催化剂提供辅因子,而无需额外的辅因子再生系统过表达。因此,将这种甲基营养型酵母的固有碳通量集中于甲醇氧化为CO2,代表了一种用于依赖NADH的全细胞转化的高效且易于使用的策略。同时,甲醇用作共溶剂、催化剂诱导剂以及辅因子再生途径表达的诱导剂和能量来源。